Analyzing the Relationship between Ambient Ozone and PM_{2.5} Levels and Annual Average Daily Traffic in Florida

Karen Sem

Department of Environmental Engineering Sciences, University of Florida

INTRODUCTION

- Ozone (O₃) and PM_{2.5} are designated Criteria Air Pollutants by the U.S. Environmental Protection Agency (EPA) due to their detrimental effects on public health and welfare.¹
- Knowledge of O₃ and PM_{2.5} sources can assist development of policies and control mechanisms that prevent or mitigate their exposure to communities.
 - One notable anthropogenic source of O_3 and $PM_{2.5}$ is road traffic emissions.^{2,3}
 - Higher road traffic is associated with more densely populated areas.

• Objectives:

- Determine spatial and temporal distribution of O_3 and $PM_{2.5}$ in Florida between 2010-2020.
- Determine relationship between average annual O₃/PM_{2.5} concentrations, average annual daily traffic (AADT), and population density in Florida during 2020.

DATA COLLECTION & ANALYSIS

- Data collected:
 - Major roads and AADT recorded in 2020 by Florida
 Department of Transportation (FDOT)
 - Average annual O₃ and PM_{2.5} concentrations recorded from 2010-2020 in Florida by air quality (AQ) monitors operated by U.S. EPA
 - Population and population density of census-designated places (CDPs) in Florida calculated by U.S. Census Bureau
- Spatiotemporal analysis:
 - Determine if urban and rural O₃/PM_{2.5} concentrations are significantly different
 - Calculate average percentage change in O₃/PM_{2.5} populations measured in urban and rural CDPs from 2010-2020
- Descriptive analysis:
 - Calculate total AADT of roads within 20 km of each monitor
 - Develop linear regression models for O₃/PM_{2.5} concentrations vs. nearby AADT or population density
 - Use Cox regression tests to compare linear regression models for different relationships

RESULTS

- Between 2010-2020, average annual O₃ concentrations decreased by 13.7%, while PM_{2.5} concentrations decreased by 0.95% (Figure 1).
- In 2020, average annual O₃ and PM_{2.5} concentrations were not significantly different between urban and rural (<2,500 people) CDPs.
- Average annual O₃ and PM_{2.5} concentrations are weakly correlated with nearby AADT and with population density (Figure 3).

Figure 1. Average annual concentrations of O_3 (in ppm) and $PM_{2.5}$ (in $\mu g/m^3$) from 2010-2020.

Figure 2. AQ monitors distributed across Florida's major roadways (shown in black) and their average (a) O_3 and (b) $PM_{2.5}$ concentrations in 2020.

Figure 3. Relationship between average annual concentrations of O_3 (in ppm) and $PM_{2.5}$ (in $\mu g/m^3$) recorded by AQ monitors in 2020 and (a) population density and (b) AADT.

DISCUSSION

- O_3 and $PM_{2.5}$ concentrations change in a significantly different manner with respect to AADT ($\alpha = 0.90$).
- While O_3 concentrations change in a significantly different manner ($\alpha = 0.90$) with respect to AADT and population density, $PM_{2.5}$ changes in a significantly similar manner.
- The different trends in O₃ and PM_{2.5} distribution and their change in concentrations with AADT or population density can be attributed to their different mechanisms of formation from road traffic emissions.
 - Ozone is formed from reactions between nitrous oxides (NO_x) and volatile organic compounds (VOCs) emitted from car, truck, and motorcycle engines.²
 - PM_{2.5} is largely formed from road dust generated from tires and from photochemical reactions of VOCs.³
- PM_{2.5} generation from road traffic emissions is more directly tied to the number of vehicles on the road.

CONCLUSIONS & APPLICATIONS

- Average annual O₃ and PM_{2.5} concentrations' weak correlation to AADT indicates that other sources are major contributors to local ambient levels in Florida.
- The insignificant difference between O_3 and $PM_{2.5}$ concentrations in rural and urban CDPs suggests that these sources are independent of population or anthropogenic activity.
- A greater understanding of the sources contributing to O_3 and $PM_{2.5}$ generation in a region can be gained by air monitoring at a smaller spatial scale.

REFERENCES

- Faridi, S., Shamsipour, M., Krzyzanowski, M., Künzli, N., Amini, H., Azimi, F., Malkawi, M., Momeniha, F., Gholampour, A., Hassanvand, M. S., & Naddafi, K. (2018). Long-term trends and health impact of PM2.5 and O3 in Tehran, Iran, 2006–2015. Environment International, 114, 37–49. https://doi.org/10.1016/j.envint.2018.02.026
- Huan, L., & Kebin, H. (2012). Traffic Optimization: A New Way for Air Pollution Control in China's Urban Areas. Environmental Science & Technology, 46(11), 5660–5661. https://doi.org/10.1021/es301778b
- 3. Chen, S., Zhang, X., Lin, J., Huang, J., Zhao, D., Yuan, T., Huang, K., Luo, Y., Jia, Z., Zang, Z., Qiu, Y., & Xie, L. (2019). Fugitive Road Dust PM 2.5 Emissions and Their Potential Health Impacts. Environmental Science & Technology, 53(14), 8455–8465. https://doi.org/10.1021/acs.est.9b00666