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Abstract

This study evaluates if and to what extent shared e-scooters can enhance public transit and

reduce driving. Survey results obtained from Washington D.C. and Los Angeles show that

many users have ridden shared e-scooters to connect with transit and to replace car trips.

Mode choice models further suggest that males, non-Whites, and people without a college

degree are more inclined to choose shared e-scooters. The stated preference for combined

use of shared e-scooters and transit (“scoot-N-ride”) is stronger among non-Whites, but

it does not differ by gender, age, income, or education level. Moreover, we find that “e-

scooter + transit” bundled pricing can effectively promote scoot-N-ride. Finally, while

survey respondents intend to use shared e-scooters for short trips only, they are willing to use

scoot-N-ride for medium-to-long trips. We call for coordination between transit agencies and

e-scooter operators to maximize the potential for shared micromobility to enhance transit

and reduce driving.

Keywords: Public transit, micromobility, mode choice, stated preference, bundled pricing

1. Introduction

Shared micromobility options, including docked bikesharing, dockless e-scooters, and

dockless e-bikes, have become increasingly popular in recent years. Most impressive is the
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growth of shared e-scooter trips: just two years after shared e-scooters first appeared in

North America, the number of e-scooter trips (86 million) was more than double that of

station-based bikesharing trips (40 million) in 2019 (NACTO, 2020). When the COVID-19

pandemic began in March 2020, e-scooter ridership plummeted but has quickly rebounded.

According to the 2021 Shared Micromobility State of the Industry Report, the number

of shared micromobility systems and vehicles in 2021 has surpassed 2019 levels in North

America (NABSA, 2020). As shared micromobility systems continue to grow in the post-

COVID era, it is important to understand whether and how they can contribute to long-term

transportation goals such as accessibility, equity, and environmental sustainability.

Micromobility proponents have suggested that shared e-scooters can deliver two essential

transportation benefits. One is the potential for shared e-scooters to substitute short car

trips, which can reduce greenhouse gas emissions associated with driving. The importance

of this benefit is supported by the fact that almost half of the personal trips made by U.S.

travelers are three miles or less and that more than 70% of these short trips are currently

made by cars. If these short car trips were to be replaced by e-scooters, enormous environ-

mental benefits could be achieved (Gebhardt et al., 2022; Meroux et al., 2022). The other

benefit of shared e-scooters is to serve as a last-mile solution to public transit. The “first-

and last-mile” problem, referring to the difficulty of buses and trains to transport people to

and from the doorsteps of their trip origins and destinations, has been an enduring challenge

for U.S. transit systems (Chen et al., 2021). When functioning as a last-mile feeder mode,

affordable and accessible shared e-scooters can significantly enhance multimodal travel ex-

perience and promote transit use. Moreover, by allowing people to gain access to a much

wider geographic area than they could reach with either mode, combined transit and shared

e-scooter use may make some travelers give up driving for longer trips.

Recent research, largely based on questionnaire surveys, has indeed generated empirical

evidence suggesting that shared e-scooters replaced some car trips and that many travelers
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used e-scooters to connect with transit (NABSA, 2022). These studies suggest that driving

is one of the most replaced modes by shared e-scooters and that a substantial percentage

(5% to 70% depending on study context) of riders have used shared e-scooters to access

transit (Wang et al., 2022; Ziedan et al., 2021). Nevertheless, there is limited understanding

of how people make mode choice decisions between shared e-scooters (and their use in

conjunction with transit) and competing alternatives such as driving or riding with a for-

hire vehicle (FHV), including taxi and Uber/Lyft. In other words, we know little about

how utility trade-offs between travel attributes such as cost and time were made in the

process by various groups of travelers. So far, only several studies have conducted mode

choice analysis on shared e-scooters to examine the modal competition and substitution

patterns systematically (e.g., Lee et al., 2021; Reck and Axhausen, 2021; Reck et al., 2021).

Notably, to our best knowledge, no published work has examined traveler preferences for

combined use of shared e-scooter and transit, i.e., “e-scooter + transit” use (to be termed as

scoot-N-ride for the rest of the paper) and the potential of scoot-N-ride to reduce driving.

This study aims to advance travel behavior understanding regarding the potential of

shared e-scooters to enhance public transit and reduce driving with a mode choice analysis.

The analysis is based on stated choice experiments (SCEs) included in a travel survey con-

ducted in Washington D.C. (DC) and Los Angeles (LA), two U.S. cities with a mature shared

e-scooter market and a large transit network. Our work makes two major contributions to

the literature. First, the mode choice models developed here generate novel insights into

how preferences for shared e-scooters, scoot-N-ride, and competing alternatives (especially

driving modes) differ across population groups and how travelers make utility trade-offs be-

tween trip attributes such as travel cost and time in their mode choice decisions. Notably, by

shedding light on the factors that influence the use of scoot-N-ride, this study fills a major

research gap discussed above. Second, we further apply the choice models to reveal mode

substitution patterns and to estimate modal split under a variety of scoot-N-ride bundle
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pricing scenarios. The results provide valuable empirical evidence that can inform policies

and strategies to promote transit and shared micromobility integration with the goals of

increasing transit use and reducing driving.

2. Literature Review

The topic of shared e-scooters has attracted significant research attention since 2019.

Existing studies have generated rich insights regarding the user profile of shared e-scooters

and factors associated with e-scooter adoption and usage, the characteristics of e-scooter

trips and their spatiotemporal patterns, e-scooters’ modal substitution effects, and shared

e-scooters’ relationship with public transit. Here we summarize the main findings.

2.1. Shared e-scooter user profiles

Compared to the populations of the cities where shared e-scooters operate, e-scooter

riders are disproportionately young (particularly age below 40), White, male, have higher

household income levels, and have a college degree (Mobility Lab, 2019; NABSA, 2020;

Portland Bureau of Transportation (PBOT), 2019; Reck and Axhausen, 2021; San Fran-

cisco Municipal Transportation Agency (SFMTA), 2019). Interestingly, however, the North

American Bikeshare Association found that people in the lowest-income bracket were propor-

tionately represented in the e-scooter rider profile (NABSA, 2020). This may be because the

equity programs implemented in some cities have promoted e-scooter use among low-income

travelers; these programs may require e-scooter operators to place a certain percentage of

e-scooters in predefined equity zones or to provide discount fares for low-income individuals

(Stowell, 2020). In addition to demographic and socioeconomic characteristics, studies have

shown that attitudinal factors such as safety perceptions of e-scooters and perceived relia-

bility have a major impact on e-scooter adoption and use (Blazanin et al., 2022; Javadinasr

et al., 2022). Finally, some authors have examined preference heterogeneity in e-scooter use
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through advanced modeling techniques such as latent class models and Structural equation

modeling (Baek et al., 2021; Guo and Zhang, 2021; Javadinasr et al., 2022; Lee et al., 2021).

2.2. Shared e-scooter trip characteristics

On e-scooter trip characteristics, analysts have mostly focused on trip purpose, trip dis-

tance, trip duration, trip costs, and the current mode replaced by e-scooters. Studies showed

that travelers used e-scooters both for leisure and recreation and for utilitarian purposes such

as commuting, shopping, running errands, and attending social activities (NABSA, 2020).

The land-use contexts (e.g., college campus, downtown, or tourist attractions) where most

e-scooters were placed can be a main factor shaping trip purposes. E-scooter trips were quite

short in general, and most studies found that the average trip length was between 1-1.5 miles

and the average duration was 12-20 minutes (NABSA, 2020; NACTO, 2020). The average

e-scooter trip cost was between $2.8 and $4.5 in 2019, but the price has increased over time

(Lazo, October 18,2019). Existing research on spatiotemporal patterns of shared e-scooter

services often compares shared e-scooters with station-based bikesharing and examines their

relationship with public transit. Empirical results have shown that despite some level of sim-

ilarity between the two, e-scooter trips and bikeshare trips have quite different spatial and

temporal patterns (McKenzie, 2019; Younes et al., 2020; Zhu et al., 2020). For instance, Zhu

et al. (2020) showed that e-scooter trips were more spatially concentrated than bikesharing

trips in Singapore.

2.3. Modal substitution effects and relationship with public transit

Regarding modal substitution effects, e-scooters were found to mostly replace walking,

followed by either driving modes (including personal driving, taxi, and ridehail) or pub-

lic transit (Laa and Leth, 2020; NABSA, 2020, 2022; NACTO, 2020; Portland Bureau of

Transportation (PBOT), 2019; San Francisco Municipal Transportation Agency (SFMTA),

2019). For each mode, the exact percentage of trips replaced by shared e-scooters varies
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significantly across study areas; in general, the car substitution rates tend to be higher in

North America, whereas the transit substitution rates are higher in European cities (Reck

et al., 2022; Wang et al., 2022). Several studies have further examined e-scooters’ environ-

mental impacts (e.g., reductions in greenhouse gas emissions) if travelers use them to replace

personal car travel (Gebhardt et al., 2022; Meroux et al., 2022). An important finding from

these studies is that e-scooters can have a more significant positive impact if their life cycle

becomes longer and if they replace gasoline (not electric) car trips.

Preliminary results are available from existing research regarding how shared e-scooters

can be integrated with public transit. Surveys conducted across cities around the world

showed that many users have ridden shared e-scooter to connect with transit public tran-

sit (NABSA, 2020, 2022; NACTO, 2020; San Francisco Municipal Transportation Agency

(SFMTA), 2019; Ziedan et al., 2021). A recent report by NABSA (2022) suggests that 63%

of riders have used shared micromobility to connect with transit at least once and that 19%

of them do this on a weekly basis. Even though the frequency of such combined e-scooter

and transit use is less known, these results indicate a general willingness toward combined

transit and e-scooter use. In addition, some studies that analyzed e-scooter trips have found

a strong correlation between transit stops and e-scooter trips (Merlin et al., 2021; Tuli et al.,

2021; Ziedan et al., 2021; Zuniga-Garcia et al., 2022), which may indicate the use of e-

scooters for first- or last-mile transit connections. Some authors have further attempted

to estimate the potential first- and last-mile e-scooter trips that happened at each transit

stop and to understand their patterns (Ma et al., 2022; Yan et al., 2021). Overall, empirical

studies of how shared e-scooters interact with public transit appear to share many common

findings with studies of bikeshare (Romm et al., 2022).

2.4. Gaps in the literature

So far, limited research has been conducted on the mode choice modeling of shared

e-scooters. Mode choice models allow the transportation community to understand modal
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competition and substitution patterns between shared e-scooters and competing modes such

as personal cars, public transit, and bike. Also, mode choice analysis can reveal which factors

influence choice behavior and can shed light on the relative influence of important factors

in different choice situations. Nevertheless, only a handful of studies have fit mode choice

models on shared e-scooters (Baek et al., 2021; Cao et al., 2021; Guo and Zhang, 2021;

Reck et al., 2021, 2022). Though generating rich behavioral insights, these studies have not

fully addressed who are more likely to integrate the use of shared e-scooters with transit and

under what circumstances are driving trips (especially FHV trips) more likely to be replaced

by e-scooter or scoot-N-ride trips. Several studies have started to explore these questions

(Baek et al., 2021; Guo and Zhang, 2021; Reck et al., 2022) but not in a comprehensive

fashion; moreover, little work has been conducted to examine the potential of scoot-N-ride

trips to reduce car trips.

In sum, despite some early findings, our overall knowledge regarding the potential for

shared e-scooters to serve as a last-mile complement to public transit and their potential to

reduce driving is limited (Oeschger et al., 2020). Specifically, much is unknown regarding

mode choice, the underlying traveler preferences for integrating shared e-scooters with transit

trips, and the potential of these trips to reduce car use. This study addresses these research

gaps by conducting a travel behavior survey in Washington D.C. and Los Angeles.

3. Data

3.1. Study area

Our study area includes Washington D.C. and Los Angeles, California, two large U.S.

cities that are both early adopters of dockless micromobility. During the study period

(2021-2022), over 10,000 shared e-scooters were permitted in a geofenced operating area

of DC and about 37,000 in LA’s operating area. The e-scooters in DC were operated by

six private companies (Bird, Lime, Lyft, Razor, Skip, and Spin), and those in LA were
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operated by five companies (Bird, Lime, Lyft, Spin, and Wheels). Both cities’ Department

of Transportation has established permit requirements for operating dockless micromobility,

with detailed terms and conditions for fleet management, parking, data reporting, payment

options, and low-income customer programs. Unlike the publicly subsidized station-based

bikeshare systems (Capital Bikeshare in DC and Metro Bike Share in LA), however, no

formal public-private partnerships exist to promote the integration between shared e-scooters

and public transit.

Both cities have a large transit system consisting of rail and bus services. Specifically,

the transit network in DC includes a Metrorail system (six lines) and a Metrobus system

(about 335 routes) which serve the DC metropolitan area, as well as the DC Circulator (six

bus routes) and the DC Streetcar which mainly serve central areas of DC. The LA transit

network consists of a metro rail system (six lines) and a metro bus system (nearly 200

routes) that serves the Greater Los Angeles area, as well as the DASH bus service that serves

downtown LA and 27 neighborhoods within the City of LA. The two cities have distinctive

travel patterns. For instance, according to the American Community Survey 2016-2020 5-

year estimates, the mode share for commuting trips in DC is drive alone (32.1%), carpool

(4.9%), public transit (31.5%), bike (4.2%), walk (12.5%), and work-from-home (12.3%); by

contrast, the commute mode share in Los Angeles is drive alone (67.7%), carpool (8.9%),

public transit (8.2%), bike (0.8%), walk (3.3%), and work-from-home (9.2%). Being much

more car-dependent, LA travelers use public transit and non-motorized modes much less

than DC travelers. These differences can ensure that our study findings regarding travel

preferences for shared e-scooters and scoot-N-ride are transferable across a wider range of

transportation contexts.

3.2. Survey description and participant recruitment

We developed a web-based survey that contains three sets of questions. First, we asked

whether and how frequently people have used different travel modes (personal vehicle, walk-
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ing, public transit, biking, e-scooter, scooter or moped, FHV, and carsharing) in the last 30

days, followed by some questions on their travel attitudes and preferences related to public

transit and e-scooters. Transit users were asked additional questions related to the last-mile

access problem, and e-scooter users were asked additional questions regarding trip purpose,

use of e-scooters to connect with transit, and barriers to scoot-N-ride trips. Second, we

developed some SCEs to elicit traveler responses to bundled “transit + e-scooter” pricing

schemes, that is, to evaluate how lower pricing can make individuals shift from using other

travel modes to scoot-N-ride. Additional details regarding the SCEs are provided in the

next section. Finally, we collected information on individual demographic and socioeco-

nomic characteristics.

The survey was piloted among a small group of individuals who are familiar with the

transportation systems in DC and LA, whose feedback was incorporated into the final sur-

vey. We administered the survey to adults who live, work, or frequently visit the two cities

through a variety of means, including personal social networks, email listservs, newsletters of

several advisory neighborhood commissions (in DC only), and social media platforms (Face-

book groups, Twitter, and Linkedin). In other words, while the study areas are the two

cities where the shared e-scooter systems operate, respondents are recruited from their cor-

responding metropolitan regions. Moreover, the e-scooter company Spin helped distribute

the survey to its users in the study regions. No cash incentive was offered to survey re-

spondents, but they can get a promo code that can be used to redeem for $5 Spin rider

credits. Respondents were offered an option to opt out the SCEs, in which case they will get

a promo code worthy of $3 Spin rider credits (only 17 respondents did so). Finally, we paid

Centiment.co, a survey firm, to collect 150 responses from the DC area (including Arlington,

Virginia) and 200 responses from LA. Participants were recruited in April 2021 and May

2022 in DC and in May 2022 for LA. In the end, 430 individuals in the D.C. region and 377
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individuals in the LA region, respectively, provided valid responses.1. After a data cleaning

process, we kept a total of valid 336 responses in DC and 274 responses in LA, respectively,

for mode-choice modeling. Some cases were removed either because the respondent did not

answer some questions (e.g., the SCEs) or because the responses provided for the SCEs were

deemed unreasonable.

3.3. Representativeness of survey sample

To evaluate the representativeness of the survey samples, we compare the socioeconomic

profiles of the survey samples with those of the two cities (i.e., DC and LA). As shown in

Table 1, in DC, 43.8% of survey respondents used an e-scooter at least once in the past

30 days and 45.2% of them used transit; in LA, these percentages were 43.1% and 29.2%,

respectively. Both e-scooter and transit users are probably oversampled here. Given that

the survey focuses on the two modes, it is natural for their users to be more willing to

participate in the survey. Other contributing factors include the distribution of the survey

to Spin e-scooter users and the offering of Spin rider credits as survey incentives, both of

which are likely to draw disproportionate responses from shared e-scooter users.

A slightly higher proportion of males responded to the survey in both cities, even though

their male populations were smaller. White populations were significantly overrepresented in

DC but only slightly overrepresented in LA; both Hispanic and Black populations were sig-

nificantly underrepresented in DC, but only Hispanic populations were underrepresented in

LA. In terms of age, survey populations skewed younger than city populations in both cities.

People aged between 25 and 40, who are significantly overrepresented, mostly attributed to

this difference. In both cities, people from higher-income households were overrepresented.

Regarding educational attainment, both surveys have an overrepresentation of people having

a college degree. Most DC survey respondents had an annual household income over $75,000,

1People who did not finish the survey or who spent three minutes or less answering the survey were
considered invalid responses.
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Table 1: Socioeconomic profile of survey respondents

Washington D.C. Los Angeles
N Sample % City % N Sample % City %

Sample size 336 100.0% 274 100.0%
E-scooter user1 147 43.8% 118 43.1%
Transit user1 152 45.2% 80 29.2%
Neither e-scooter nor transit user 121 36.0% 121 44.2%
Gender

Female 161 47.9% 52.4% 134 48.9% 50.5%
Male 175 52.1% 47.6% 140 51.1% 49.5%

Race/ethnicity
Hispanic 13 3.9% 11.1% 55 20.1% 48.1%
White 226 67.3% 41.1% 143 52.2% 48.9%
Black 46 13.7% 45.4% 22 8.0% 8.8%

Have a college degree 269 80.1% 55.2% 159 58.0% 32.9%
Age

18-24 48 14.3% 10.5% 31 11.3% 10.0%
25-29 73 21.7% 11.8% 43 15.7% 9.4%
30-39 97 28.9% 20.3% 72 26.3% 16.4%
40-49 47 14.0% 11.8% 48 17.5% 13.5%
50-59 32 9.5% 10.5% 35 12.8% 12.3%
60-69 22 6.5% 8.9% 27 9.9% 9.5%
70 or over 17 5.1% 8.2% 18 6.6% 8.6%

Household income
Less than $25,000 23 6.8% 17.7% 48 17.5% 20.6%
$25,000-$49,999 50 14.9% 12.8% 47 17.2% 19.3%
$50,000-$74,999 54 16.1% 12.4% 53 19.3% 15.4%
$75,000-$99,999 54 16.1% 10.6% 40 14.6% 11.4%
$100,000-$149,999 72 21.4% 16.4% 40 14.6% 14.9%
$150,000 or more 83 24.7% 30.1% 46 16.8% 18.3%

Student 39 11.6% 12.4% 40 14.6% 10.9%
Own a vehicle 240 71.4% 64.6% 238 86.9% 88.1%
Have no smartphone 3 0.9% 8 2.9%
Have no mobile data plan 3 0.9% 2 0.7%
Have no bank account 2 0.6% 9 3.3%
Have disability 10 3% 18 6.6%

Note: 1. E-scooter and transit users are defined as individuals who have used the corresponding mode at
least once in the past 30 days.

with less than 7% below $25,000, suggesting an underrepresentation of the low-income pop-

ulation. However, the income distribution of the LA sample appears to be quite close to

that of the city population. As existing research generally found that shared e-scooter users

are disproportionately White, male, younger, having higher income and better education

(NABSA, 2022; NACTO, 2020), the overrepresentation of these population groups in our
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survey samples is not surprising. On the other hand, the percentages of survey respondents

who were students and owned a car were not very different from the city percentages.

The survey also asked questions about the potential barriers to using e-scooters. Among

the survey participants, roughly 5-13% of users face one or more technological barriers (no

smartphone, data plan, or inter) or a physical barrier (having a disability), with higher pro-

portions in LA compared to DC. Since the same access barriers may also impact one’s ability

or likelihood to participate in the survey, we believe that these proportions are underesti-

mated. Future work may consider reducing this sampling bias by conducting a paper-based

survey and distributing the survey through other channels (e.g., mailing and in-person re-

cruitment).

4. Stated choice experiments

SCEs are used in this study to understand how individuals make utility trade-offs between

travel attributes such as cost and time when they choose among various travel modes. We

use the stated-preference data generated from SCEs rather than reveal-preference data due

to several reasons. First, scoot-N-ride is not a commonly used travel option, which means

collecting revealed-preference data on it will be challenging. Also, when someone took a trip

with a travel mode that does not involve a shared e-scooter, it is difficult to distinguish if it

is because e-scooters were unavailable or because e-scooters were not chosen. Accordingly,

using revealed preference data could lead to more biased coefficient estimates. Finally, an

important focus of this project is to evaluate the potential of scoot-N-ride to replace driving

under various bundled “transit + e-scooter” pricing schemes. Since bundled pricing of transit

and e-scooters is not implemented in practice yet, stated-preference methods such as SCEs

are ideal for this purpose (Louviere et al., 2000).

That respondents fully understand the SCEs and make reasonable selections is critical

to the successful implementation of this research approach. To improve the realism of the
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SCEs, each respondent was presented with individual-specific choice scenarios tailored to

their prior trip experiences. Specifically, we asked respondents to report a one-way trip

that they regularly made before COVID-19 and then constructed the SCEs based on the

attributes of this self-reported trip. The trip attributes that we asked for include trip

purpose, travel mode used, trip length, trip cost, and components of travel time (e.g., for a

transit trip, individuals were asked to estimate the walking to and from transit stops, wait

time, and riding time). Prior to data entry, we asked respondents to only consider a trip

longer than 0.5 miles but no longer than 10 miles, which is a range appropriate for riding a

shared e-scooter or using the scoot-N-ride option. Moreover, we limited the choice of travel

modes used for this trip to four options: personal vehicle, walking, transit with walking as

the access/egress mode, and FHV (taxi or Uber/Lyft). These are the travel modes most

replaced by shared e-scooters according to recent empirical research (NABSA, 2022; Wang

et al., 2022).

The focus of the SCEs was to evaluate whether and to what extent bundled pricing

schemes can make travelers shift from the mode they currently use to scoot-N-ride under

a variety of trip scenarios shaped by e-scooter speed, e-scooter baseline price, and the type

of transit system to be integrated with. To design realistic SCEs that can effectively elicit

traveler responses, we applied orthogonal main-effects experimental design to obtain nine

SCEs (shown in Table 2) based on the following trip attributes and attribute levels: e-

scooter travel speed (6 mph, 9 mph, 12 mph), e-scooter price (one dollar to unlock and

32 cents per minute use, and one dollar to unlock and 40 cents per minute use),2 transit

type (bus and rail), and bundled “transit + e-scooter” pricing discount (waive of e-scooter

unlock fee, 25% off e-scooter trip costs, and 50% off e-scooter trip costs). The attribute

levels were determined based on empirical values derived from the study area. In each SCE,

2These are the prices used for DC. The e-scooter pricing in LA differed from DC when we conducted the
survey. Hence, we set the price levels in LA as follows: one dollar to unlock and 39 cents per minute use,
and one dollar to unlock and 45 cents per minute use.
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respondents were asked which of the three travel options they would choose for the one-way

trip that they described: the travel mode currently used, a shared e-scooter, or the scoot-

N-ride option. Across the SCEs, the attribute values for the currently used mode do not

change, whereas the attribute values for the shared e-scooter and scoot-N-ride options vary

in accordance with the attribute levels shown in Table 2.

Table 2: Profiles of the nine stated choice experiments

Experiment E-scooter speed E-scooter pricing1 Transit type2 incentive
1 12 mph $1 to unlock, ¢32 per min Metro Waiver of unlock fee
2 6 mph $1 to unlock, ¢32 per min Bus Waiver of unlock fee
3 9 mph $1 to unlock, ¢32 per min Metro 50% off e-scooter fare
4 12 mph $1 to unlock, ¢32 per min Bus 25% off e-scooter fare
5 9 mph $1 to unlock, ¢32 per min Bus 25% off e-scooter fare
6 9 mph $1 to unlock, ¢40 per min Bus Waiver of unlock fee
7 6 mph $1 to unlock, ¢32 per min Bus 50% off e-scooter fare
8 12 mph $1 to unlock, ¢40 per min Bus 50% off e-scooter fare
9 6 mph $1 to unlock, ¢40 per min Metro 25% off e-scooter fare

Notes: 1. The prices shown in the table are for DC. In LA, the pricing levels were “$1 to unlock, ¢39 per
min” and “$1 to unlock, ¢45 per min.”
2. In DC, the bus travel speed was set as 10 mph and rail travel speed 35 mph, and the bus fare was $2
(one-way regular fare), and the rail fare is set as $3 (DC’s Metrorail system has a distance-based fare
system that ranges from $2-$3.85 during non-peak hours and $2.25-$6 during peak hours). In LA, the bus
travel speed was set as 10 mph and rail speed 30 mph, and the bus and rail fares were both $1.75 (one-way
regular fare). These values were empirical values derived from local conditions.

Figure 1 is an illustration of an SCE presented to a respondent who reported a driving

trip. We used the self-reported trip length, as well as the attribute levels as shown in Table

2, to estimate the attribute values for the shared e-scooter option. In addition, we assumed

the wait time for the bus or train to be three minutes when estimating the attribute values

for scoot-N-ride. Finally, to reduce the cognitive burden for each survey respondent, we

presented a random subset (five) of the nine SCEs to each respondent. Previous research

has shown that the validity of responses to SCEs decreases if respondents are overburdened

(Louviere et al., 2000).

A total of 336 DC respondents and 274 LA respondents, respectively, participated in the

SCEs. As shown in Table 3, For the revealed preference trips reported by DC respondents,
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Figure 1: A stated choice experiment presented to a respondent who reported a driving trip

119 (35%) were made by public transit, 113 (34%) by personal vehicle, 70 (21%) by walking,

and 34 (10%) by FHV. By contrast, most LA respondents (58%) reported a personal vehicle

trip, followed by FHV, transit, and walking. In DC, the median and mean distance of trips

made by personal vehicle is the longest, followed by FHV, transit, and walking. However,

on average, the travel time is the longest for transit trips, and the travel cost is the highest

for FHV trips. On average, the revealed preference trips reported by LA respondents were

longer than those reported by DC respondents, which may be because DC has a more

compact built environment. Another key difference is that the FHV trips reported by LA

respondents were shorter than those reported by DC respondents, but their costs were quite

similar. Finally, transit fare was generally lower in LA than in DC, but the cost of driving in

LA also appears to be lower (mainly due to the greater availability of free parking). These

differences allow us to capture traveler’s modal preferences in a broader set of land-use and

transportation contexts, which can enhance the generalizability of our study findings.
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Table 3: Characteristics of revealed preference trips reported by survey respondents

N Distance (mile) Time (min) Cost ($)
Median Mean Median Mean Median Mean

Washington D.C.
All 336 3.00 5.13 25 26 2.00 3.73
For-hire vehicle 113 5.00 8.40 20 24 1.63 4.25
FHV 34 4.00 5.17 20 21 12.00 14.16
Transit 119 3.00 4.13 30 32 2.25 2.54
Walk 70 1.20 1.52 20 24 0.00 0.00
Los Angeles
All 274 3.75 6.44 20 22 1.20 3.93
Personal vehicle 158 4.70 8.21 17 20 1.00 3.15
For-hire vehicle 40 2.55 3.47 15 17 12.16 14.15
Transit 43 5.00 6.22 30 33 1.55 1.37
Walk 33 1.50 1.86 25 25 0.00 0.00

5. Results

5.1. Descriptive analysis

In the survey, we asked some questions to investigate to what extent shared e-scooters

have replaced car use and have been used as a last-mile feeder mode to transit. Figure 2

shows the survey responses for these questions. Specifically, Figure 2a sheds light on the

modal substitution effects of shared e-scooters. The question asks shared e-scooter users:

“Think about your last shared e-scooter trip in [City]. If a shared e-scooter had not been

available, how would you have traveled around?” Consistent with previous findings from

North America (Wang et al., 2022), the results suggest that waking and driving (including

FHV options) were the most replaced modes in both DC and LA. The substitution effect of

shared e-scooters on driving appears much stronger in LA than in DC, but it can be due to

sampling bias. Figure 2b reveals how transit riders usually get to bus or rail stops. Note that

a respondent was allowed to select up to two travel modes for this question. Unsurprisingly,

we found that walking is the dominant option, followed by driving or being dropped off,

riding e-scooters or bikes, and taking Uber/Lyft. Considering that shared e-scooters were

oversampled, the actual percentage of DC/LA population who rode e-scooters for transit

connections is probably lower. Regardless, these results offer preliminary evidence on the
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use of shared micromobility (including e-scooters) as a last-mile feeder mode to transit.

(a) How would one have traveled if shared e-scooters were
unavailable for last trip (N=146 in DC, N=115 in LA)

(b) How people usually travel to transit stops (N=152 in DC,
N=80 in LA)

(c) Have one considered using e-scooters to reach transit stops
at a distance (N=238 in DC, N=168 in LA)

(d) Proportion of shared e-scooter trips connecting with pub-
lic transit (N=147 in DC, N=118 in LA)

Figure 2: Descriptive results on shared e-scooters’ potential to replace car use and enhance transit

Figure 2c and 2d offer additional behavioral insights into the potential use of shared

e-scooters for enhancing transit connectivity. For Figure 2c, the survey asks: “Have you

considered using shared e-scooters to connect with transit stops when they are too far

away to walk to?” This question was only displayed to survey participants who reported

the “last-mile” transit connectivity issue as a major barrier to riding transit (79% of DC

respondents and 78% of LA respondents, respectively). The results suggest that about 40%

of respondents in both cities have frequently or sometimes considered shared e-scooters a

last-mile feeder option. This percentage can grow over time if the penetration rate of shared

e-scooters increases or if shared e-scooters become more available and affordable. Finally,

Figure 2d presents results on the proportion of shared e-scooter trips made by current users
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to connect with public transit. We find that about two-thirds of users in DC and about

half of the users in LA had used shared e-scooters for connecting with transit at least once.

In addition, for about one-fourth of current shared e-scooter users in DC and LA, over a

quarter of their trips were for the purpose of connecting with transit.

In sum, the survey results show that shared e-scooters are replacing some driving trips,

including personal-vehicle and FHV trips. In addition, most existing users have used shared

e-scooters as a last-mile feeder mode to public transit at least once. For some, e-scooters

have become a main mode to access transit stops. Finally, we find a wide interest among

DC and LA travelers in using shared e-scooters to connect with transit stops at a distance,

suggesting the potential for shard micromobility to enhance transit operations and traveler

experience.

5.2. Mode choice modeling and parameter specification

To further reveal modal competition and substitution patterns, we examine how travelers

with different modal preferences and socioeconomic characteristics made trade-offs among

various trip attributes such as travel time and cost in their travel mode choice. As discussed

above, we constructed individual-specific SCEs based on attributes of a self-reported trip.

The SCE responses, together with some socioeconomic and travel-related variables, were

used for discrete choice modeling. Following a bottom-up model-building approach (i.e.,

gradually adding parameters to the model), we tested a variety of specifications before

deciding on the final model. The final model is a mixed-logit (ML) model (i.e., a random

parameter logit model) whose functional form is as follows.
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UCar = βtt ∗ TT + βovtt ∗OV TTDistance+ βcost ∗ CostHHIncome

UFHV = ASCFHV + βtt ∗ TT + βovtt ∗OV TTDistance+ βcost ∗ CostHHIncome

UTransit = ASCTransit + βtt ∗ TT + βovtt ∗OV TTDistance+ βcost ∗ CostHHIncome

UWalk = ASCWalk + βtt ∗ TT + βovtt ∗OV TTDistance

UE-scooter = ASCScooter + βtt ∗ TT + βovtt ∗OV TTDistance+ βcost ∗ CostHHIncome+ βSafety ∗ EscooterSafety

+ βScooterUser,E-scooter ∗ ScooterUser + βAge,E-scooter ∗AgeBelow40 + βWhite,E-scooter ∗White

+ βMale,E-scooter ∗Male+ υE-scooter,Scoot-N-ride

UScoot-N-ride = ASCScoot-N-ride + βtt ∗ TT + βovtt ∗OV TTDistance+ βSafety ∗ EscooterSafety + βcost ∗ CostHHIncome

+ βScooterUser,Scoot-N-ride ∗ ScooterUser + βTransitUser,Scoot-N-ride ∗ TransitUser + βIncome,Scoot-N-ride ∗ LowIncome

+ βAge,Scoot-N-ride ∗AgeBelow40 + βWhite,Scoot-N-ride ∗White+ υE-scooter,Scoot-N-ride,

(1)

where ASC refers to alternative-specific constant, TT refers to travel time (TT), OVTTDis-

tance refers to out-of-vehicle time (OVTT) divided by trip distance, and CostHHIncome

refers to trip cost divided by household income. TT includes in-vehicle travel time (IVTT)

and OVTT. We defined IVTT as riding time on the bus and in the FHV and riding time on

e-scooters as OVTT; OVTT also includes walking time and waiting time (for the FHV and

the bus). The specification of OVTTDistance has two considerations: first, it ensures that

travelers will be more sensitive to OVTT than IVTT, an expectation consistent with the

literature (Abrantes and Wardman, 2011); second, dividing OVTT by trip distance makes

the sensitivity of individuals to OVTT diminish with the trip distance. We divided trip

costs by household income because higher-income people tend to be less sensitive to trip

costs. Doing so also reduced the degree of correlation between trip cost and travel-time
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variables. The EscooterSafety variable was developed based on a survey question that asks

respondents to what extent they agree riding e-scooters is a safe way to get around, with

a higher value (which ranges from 1 to 5) indicating a more favorable safety perception

toward e-scooters. All other variable codes and their corresponding coefficients should be

self-explanatory. By omitting the ASC for the driving alternative, we have set driving as

the reference alternative. The coefficients of time and cost variables were generic, and all

other coefficients were alternative specific; the subscripts indicate the alternative that each

coefficient is associated with. Moreover, two ASCs (for e-scooter and scoot-N-ride) and three

level-of-service coefficients (i.e., βtt, βovtt, and βcost) were specified as random parameters.

The two ASCs were assessed with a normal distribution whereas the level-of-service vari-

ables were assessed with a constrained triangular distribution (i.e., equal mean and standard

deviation). The assumption of triangular distributions can ensure non-negative estimates

of individual willingness-to-pay measures. Finally, υE-scooter,Scoot-N-ride is an error component

used to capture the unobserved heterogeneity associated the shared e-scooter and scoot-

N-ride options. Prior to finalizing the model specification, we tested additional random

parameters and error components (e.g., between transit and scoot-N-ride) but found them

to be statistically insignificant.

Since the sample size for each city was relatively small, we decided to pool the data from

DC and LA together to fit the final model. We also fitted separate models for the sample

data in each city and observed minor differences in the results (the significance level of

coefficients was largely the same across models). We computed the variance inflation factor

value for all independent variables and found that all the variables had a value smaller than

5, which indicates little concern for multicollinearity. Finally, following common practice,

we fitted a multinomial logit (MNL) model with an identical set of variables and displayed

its outputs alongside those of the ML model as a reference.
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5.3. Model results

As shown in Table 4, the adjusted McFadden pseudo R-square for the MNL model was

0.19, which is neither very high nor too low. McFadden (1979) noted that the McFadden

pseudo R-square in a choice model should not be judged by the standards for a “good

fit” in ordinary regression analysis and that values of 0.2 to 0.4 represent an excellent fit.

Except for the ASC of transit, all ASCs were negative and statistically significant at the

0.05 level. This means that, on average, respondents prefer driving over other travel options.

This could result from the fact that most survey respondents own a personal vehicle. As

expected, all level-of-service variables (i.e., time and cost variables) were negative and highly

significant (at the 0.01 level). Moreover, respondents appear to value OVTT much more

than IVTT. For instance, for a 1-mile trip, the MNL model estimated that the travelers

valued one min of OVTT 1.48 times as much as they valued IVTT. We save the discussions

of the socioeconomic and demographic variables for the ML model because the MNL model

is not the focus here. The main weakness of the MNL model is that it does not account

for serial correlation, which means that the coefficient estimates could be biased. We hence

turn out attention to the ML model, which not only addresses this issue but also allows one

to examine individual preference heterogeneity.

The outputs of the ML model are also presented in Table 4. When estimating the ML

model, we used 3000 Halton draws from the mixing distribution to perform the integration.

The adjusted McFadden’s pseudo R-square value for this model was 0.36, a significant

improvement compared to the MNL model, which indicates excellent model fit as McFadden

(1979) suggested. Compared to the MNL model, the coefficient estimates of the ML model

were largely similar except for a few differences. First, due to the addition of random

effects, the significant level of most coefficients dropped to some degree. Second, while

the coefficient of OVTTDistance (OVTT divided by trip distance) was not significant at

the 0.05 level in the MNL model, it became highly significant in the ML model. Since
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Table 4: Outputs of the final mixed logit model and the reference multinomial logit model

Variable Alternatives Multinomial logit Mixed logit
Coeff. z value Coeff. z value

Constants
Walk Walk -0.526* -2.50 -0.050 -0.08
Transit Transit -0.176 -1.14 -0.150 -0.28
FHV FHV -1.096** -6.14 -1.608* -2.21
E-scooter E-scooter -3.286** -13.22 -6.130** -7.16
Scoot-N-ride Scoot-N-ride -4.275** -14.43 -8.024** -8.37

level of service variables
Travel time All modes -0.045** -9.88 -0.106** -8.12
Out-of-vehicle travel time
(divided by trips distance) All modes -0.021 -1.77 -0.110** -3.26
Trip cost (divided by income) All modes -0.176** -8.21 -0.550** -6.10

Random parameter standard deviations
ASCE-scooter E-scooter 1.779** 4.69
ASCScoot-N-ride Scoot-N-ride 1.908** 4.78
Travel time All modes 0.106** 8.12
Out-of-vehicle travel time
(divided by trips distance) All modes 0.110** 3.26
Trip cost (divided by income) All modes 0.550** 6.10

Sociodemographic and behavioral variables
Male E-scooter 0.266* 2.17 0.404 0.95

Scoot-N-ride 0.134 0.84 0.154 0.34
Age below 40 E-scooter 0.205 1.68 0.507 1.18

Scoot-N-ride -0.047 -0.28 -0.065 -0.14
White E-scooter -0.461** -3.74 -0.966* -2.15

Scoot-N-ride -0.642** -4.02 -1.197** -2.58
Household income <$25,000 Scoot-N-ride -0.061 -0.32 -0.064 -0.14
College Graduate E-scooter -0.331* -2.34 -0.996* -2.09

Scoot-N-ride 0.048 0.25 -0.332 -0.64
E-scooter safety perception E-scooter, Scoot-N-ride 0.424** 8.16 0.902** 4.97
E-scooter user E-scooter 1.135** 8.70 2.418** 5.24

Scoot-N-ride 0.539** 3.25 1.431** 2.83
Transit user Scoot-N-ride 0.417** 2.68 0.782 1.85

Error component E-scooter, Scoot-N-ride 2.683** 8.74

Number of individuals 610 610
Number of observations 2854 610
Log likelihood at convergence -1529.69 -1192.17
Log likelihood (Null model) -1880.74 -1880.74
McFadden Pseudo R2 0.19 0.36

** Significance at %1, * Significance at %5 level.
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existing studies have commonly shown that people are more sensitive to out-of-vehicle travel

time more than in-vehicle travel time (Abrantes and Wardman, 2011), the coefficient was

expected to be negative and statistically significant; in other words, the ML model result

is more consistent with the literature. Finally, several previously significant variables in

the MNL model, including βMale,E-scooter, and βTransitUser,Scoot-N-ride, became insignificant in

the ML model. These results indicate that once preference heterogeneity is accounted for,

there is no group difference between males and females regarding their stated preference

for e-scooters or between transit users and non-users regarding their stated preference for

Scoot-N-ride. Overall, these results imply that the coefficient estimates of the MNL are

likely biased, and an ML model that accounts for preference heterogeneity can reduce these

biases.

The mean estimates of all ASCs in the ML model had a negative sign. However, unlike

the MNL model, the ASC of walking was not significantly different from zero, suggesting

that the average respondent prefers walking as much as driving after individual preference

heterogeneity is accounted for. Unsurprisingly, all level-of-service variables were negative

and highly significant. The results on their standard deviations indicate significant response

heterogeneity among the survey participants, which is consistent with prior mode choice

studies on e-scooters (Baek et al., 2021; Lee et al., 2021; Reck et al., 2022). Compared

to the MNL model, the travel time importance ratio between OVTT and IVTT estimated

by the ML model is closer to the commonly assumed value of two. According to the ML

model, the mean estimate of OVTT is 2.04 times that of IVTT for a 1-mile trip. Based on

the coefficients of travel time and cost, we can further compute willingness-to-pay measures.

For instance, based on the mean estimates of the ML model, for a 3-mile trip, the willingness-

to-pay measure for travelers whose household income was between $50,000 and $75,000 was

$23.17 per hour of in-vehicle travel time and $31.19 per hour of out-of-vehicle travel time.

We found that the socioeconomic and demographic groups that indicate a stronger pref-
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erence for shared e-scooters differ from those who currently use them. The ML model

suggests that males, non-Whites, and people without a college degree had a stronger pref-

erence for using shared e-scooters. Preference for shared e-scooters did not differ between

respondents aged 40 or below and those aged above 40 or between low-income respondents

(household income below ¡$25,000) and higher-income ones. These findings stand in contrast

to existing research which shows that shared e-scooter users are disproportionately young,

White, male, better educated, and have higher income (NABSA, 2020, 2022; NACTO, 2020).

Though somewhat surprising, these results are largely consistent with recent studies that

examine behavioral intentions or modal preferences as related to shared e-scooters. For in-

stance, Sanders et al. (2020) surveyed over a thousand university staff in Tempe and found

that non-White travelers had a stronger intention to try e-scooters. Baek et al. (2021) found

that travelers’ stated preferences for using shared e-scooters as a last-mile travel mode did

not vary by age or income. Mode choice analysis conducted by Reck et al. (2022) based on

revealed preference data also showed that individual preferences for shared e-scooters did

not differ across age groups or between college graduates and those without a university

education. Overall, these results suggest that stated intentions or preferences often differ

from actual behavior (Buehler et al., 2021; Louviere et al., 2000), which can be explained

by two reasons. First, individuals sometimes do not translate their intentions or preferences

into action. Second, there exists a variety of barriers (e.g., pricing, technology access, or

safety) that prevent people from using shared e-scooters even if they wanted to (Sanders

et al., 2020).

Unsurprisingly, e-scooter users, transit users, and individuals who have a more favorable

perception of e-scooters as a safe way to get around have a stronger preference for the shared

e-scooter and scoot-N-ride options. The fact that e-scooter and transit users are generally

onboard with the scoot-N-ride option corroborates the descriptive finding that there exists

a broad interest in using shared e-scooters as a last-mile feeder mode to public transit.
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Moreover, non-White respondents showed a stronger inclination to use scoot-N-ride than

White respondents, and respondents’ preference for scoot-N-ride does not differ by gender,

age, income, or education level. The stronger preference for scoot-N-ride among non-White

travelers, who tend to be more reliant on public transit than other population groups (Clark,

2017), may indicate a strong desire to find solutions to the last-mile transit connectivity issue

commonly faced by them. This finding suggests the need for service coordination between

public transit and shared micromobility systems to enhance public transportation options

for traditionally underserved populations.

6. Simulating market shares under various pricing scenarios

To further shed light on modal substitution patterns, we applied the ML model results to

estimate market shares among the six travel options: personal car, FHV, walk, transit (with

walking as the access mode), shared e-scooters, and scoot-N-ride. Specifically, we simulated

market shares of each travel mode under different scoot-N-ride bundled pricing schemes.

We focus on bundled pricing schemes here because it is the most selected option when DC

and LA survey participants were asked about changes that can increase their use of shared

e-scooters to connect with transit. Moreover, both shared micromobility companies (e.g.,

Spin) and some transit agencies have an interest in implementing this strategy. We used the

revealed-preference data (i.e., the one-way trips reported by the survey respondents) as the

input data for these simulations. Note that the main purpose here is to evaluate the relative

effectiveness of plausible scoot-N-ride bundled pricing schemes rather than to have a precise

prediction of future modal split. The latter is unrealistic considering that the sample size

was relatively small, that the sample was not representative of the general population, and

that the one-way trips reported by respondents were not representative of the trips taken by

all travelers. One could also argue that as travel trends constantly shift during COVID-19,

performing travel demand forecasting based on existing data is extremely challenging, if not
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impossible.

We tested the following scoot-N-ride bundled pricing incentives: 25% off e-scooter fare,

50% off e-scooter fare, $1 off e-scooter fare (i.e., waiver of e-scooter unlock fee), and $3 off

e-scooter fare. Informed by our discussions with several transit agencies and the e-scooter

company Spin, these options are what we believe to be plausible discounts that future public-

private partnerships between transit agencies and micromobility operators can lead to. There

have been ongoing conversations on developing such partnerships to our knowledge, and

time-limited, small-scale partnerships have already happened in some places (e.g., the 2020

Miami-Dade County multimodal rewards program). When estimating the market share

among the six travel modes that we modeled, we made the following assumptions: 1) for the

travel modes that people currently use (i.e., personal vehicle, walking, transit, and FHV),

their trip attributes were respondents’ own estimates. 2) for e-scooters, the e-scooter fare

was assumed to be “one dollar to unlock, and 32 cents per min use” in DC and “one dollar

to unlock, and 39 cents per min use” in LA, and the e-scooter speed was set at 9 mph; 3)

for scoot-N-ride, we assume the e-scooter speed to be 9 mph and applied the same e-scooter

baseline pricing. Also, we assumed the e-scooter leg of the scoot-N-ride trip to be one mile.

Travelers may take an e-scooter to either connect with the bus or the Metro (the two transit

types were randomly assigned to trip scenarios), which will result in different trip estimates.

Considering that the impacts of the bundled pricing schemes may differ between the two

cities, we initially performed the simulations for each city separately. However, we found

that the findings from the two cities were consistent. Hence, for simplicity, we performed

the simulations based on the pooled sample data.

Figure 3 shows the simulation results grouped by current travel mode, which can shed

light on the relative effectiveness of each bundled pricing scheme on promoting scoot-N-ride

as well as the underlying modal substitution patterns. The results suggested that offering

a $3 e-scooter credit would be the most effective pricing strategy, followed by a half-price
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Figure 3: Market share under various pricing scenarios by current travel mode

discount. In the case of a feeder trip to public transit, a $3 discount is usually great than

a half-price discount. A 25%-off or a ”unlock for free” (i.e., one-dollar off) fare discount

would have a small impact on the overall market share. Regarding modal substitution

effects, we find that the market-share gains of scoot-N-ride mostly likely come from FHV

trips, followed by existing transit trips with walking as the access/egress mode, and walking

trips. Only a very small proportion (less than 1% under all scenarios) of personal vehicle

trips are expected to switch to scoot-N-ride trips. Considering the large volume of driving

trips happening in DC and LA, however, the growth in the absolute number of scoot-N-ride

trips can still be substantial. In addition to transit improvements, road and parking pricing

are needed to promote the switch from personal driving to scoot-N-ride. Only a “carrot

and stick” strategy can make more drivers who enjoy free parking in most places consider

switching modes (Small, 2005).

Figure 4 presents the simulation results grouped by trip distance, which visualizes modal

split and modal substitution effects at different ranges of trip distance. We observe that

survey respondents generally perceive shared e-scooters as a travel mode that serves short

27



Figure 4: Market share under various pricing scenarios by trip distance

trips. A very small proportion of individuals would choose to use an e-scooter when the trip

distance is longer than 2.5 miles. By contrast, the proportion of individuals choosing scoot-

N-ride does not differ significantly across distance ranges, which implies that the scoot-N-ride

option can serve a broader range of travel needs. By serving as a last-mile complement to

transit and hence expanding the geographic area that people can reach with transit, shared

e-scooters can broaden the appeal of public transit in many trip scenarios.

7. Conclusion

With shared e-scooter programs continuing to expand to more cities, e-scooters are be-

coming an increasingly visible and indispensable component of urban transportation systems.

This study evaluates the potential for shared e-scooters to complement public transit and

to reduce driving either by itself or by its combined use with buses or trains. We conducted

a survey in Washington D.C. and Los Angeles to understand travel behavior as related to

using shared e-scooters (including using them to connect with transit) and the underlying

traveler preferences, as well as modal competition and substitution patterns. Descriptive

analysis of the survey data has shown some substitution effects of shared e-scooters on driv-
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ing trips, including personal-vehicle and for-hire vehicle trips. In addition, a wide interest

exists among survey participants to use shared e-scooters as a solution when they face the

last-mile problem. A majority of current users have already been using shared e-scooters as

a last-mile feeder mode to transit; for some, e-scooters are the main mode to access transit

stops.

Discrete choice models further show that both travel time and cost are significant factors

shaping travelers’ choice of travel modes and that significant preference heterogeneity exists

among DC and LA travelers with regard to shared e-scooters and scoot-N-ride. The mixed-

logit model estimates that travelers value out-of-vehicle time more than in-vehicle travel

time, about two times as much for short trips. Interestingly, the socioeconomic and demo-

graphic groups who indicate a stronger preference for shared e-scooters differ from those

who currently use them. We find that males, non-Whites, and people without a college

degree have a stronger tendency to choose shared e-scooters and that stated preference for

shared e-scooters did not differ by age or household income. Considering that the current

e-scooter users are found to be disproportionately young, White, male, better educated,

and have higher income (NABSA, 2022), we interpret these results as suggesting that bar-

riers such as higher cost or safety concerns have impeded many population groups from

using shared e-scooters. Moreover, we find that non-White respondents are more inclined

to use scoot-N-ride than White respondents, which may arise from a desire to seek last-mile

transit solutions. These results imply that understanding and addressing the barriers faced

by various population groups, especially those who are traditionally underserved by the

transportation systems, to use shared e-scooters (especially their combined use with public

transit) should be a key future research agenda.

Market share simulations based on the ML model outputs further generate insights into

modal substitution patterns between shared e-scooters, scoot-N-ride, and competing modes

such as driving. By simulating the impacts of several “e-scooter + transit” bundled pricing
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scenarios, we confirmed that fare discounts can incentivize a shift from some driving trips

(mostly for-hire vehicle trips) to scoot-N-ride trips. The impacts of scoot-N-ride on personal

vehicle trips are estimated to be small, suggesting that improving multimodal travel options

alone is not enough to make drivers switch modes. Additional measures such as road and

parking pricing are probably needed to promote the switch from personal driving to riding

e-scooters or scoot-N-ride. Moreover, survey respondents generally intend to use shared

e-scooters only for short trips, but they are willing to use scoot-N-ride for medium to long

trips. Promoting scoot-N-ride should be a key strategy if reducing vehicle miles traveled is

the policy focus.

Overall, the study results provide empirical support for the idea of developing partner-

ships and coordinating services between transit agencies and e-scooter operators to enhance

multimodal travel and reduce car use. However, some limitations should be noted. First,

the study focuses on DC and LA, two large U.S. cities that offer wide and extensive transit

services. More empirical studies in other cities, especially smaller ones with significantly

different transportation contexts, should be conducted to verify and enrich our study find-

ings. Also, the paper has two objectives: evaluating the potential of shared e-scooters to

enhance transit, and evaluating to what extent shared e-scooters can reduce reducing. While

both objectives were addressed here, more emphasis is placed on the first objective. Due

to the significance of the second objective, future studies should conduct in-depth analyses

of important topics not examined here, such as why and when people may choose shared

e-scooters over driving. Moreover, information on trip origins and destinations was not

collected from the stated preference survey, which prevented us from developing land-use

variables to be included in the choice models. Considering that the built environment is

expected to influence travel mode choice (Handy et al., 2005), our model results can have

some omitted variable bias. Future research should investigate under what land-use and trip

circumstances travelers are more likely to use shared micromobility or scoot-N-ride options
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and what strategies can effectively promote a switch from personal driving to these options.
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