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Abstract: 4 

Food insecurity is a major global challenge. Understanding household food access is 5 

crucial for developing strategies to combat food insecurity and obesity-related 6 

conditions like diabetes and cardiovascular diseases. Traditionally, researchers used 7 

surveys or specific location tracking data, which, while valuable, often had small 8 

sample sizes leading to limited generalizability. Large-scale mobile device GPS data 9 

offer detailed, high-resolution information on human mobility, allowing for a more 10 

comprehensive analysis of food access patterns. This paper assesses the potential and 11 

limitations of using mobile device location data, utilizing a Terabyte-level GPS dataset 12 

of 286 million records in Jacksonville, Florida. The results indicate that mobile GPS 13 

data can effectively capture households' food access activities and reveal richer 14 

spatiotemporal patterns. We validate our findings by comparing them with traditional 15 

approaches and conducting sensitivity analyses. The study highlights that results are 16 

sensitive to algorithm design and parameter settings, emphasizing the need for thorough 17 

validation. Our research underscores the importance of using GPS data for food access 18 

studies and informs policy discussions to improve food security. 19 
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1. Background 26 

Food insecurity, which means the lack of stable access to sufficient, safe, and nutritious 27 

food for a healthy, active life (Simelane and Worth 2020), is a major challenge faced by 28 

many households in the US. In 2022, the Department of Agriculture reported that 12.8% 29 

of U.S. households experienced food insecurity (Rabbitt et al. 2023). Meanwhile, prior 30 

studies have established strong associations between food insecurity and many critical 31 

health conditions, such as obesity, diabetes, and cardiovascular diseases (Bodor et al. 32 

2010, Berkowitz et al. 2018). Food insecurity is a multi-dimensional issue. The Food and 33 

Nutrition Security (FNS) theory have outlined four key pillars of food security: 34 

availability, access, utilization, and stability, where the first three forming a consequential 35 

relationship, and stability adding a temporal dimension (Simelane and Worth 2020). As 36 

a crucial link in this framework, food access is widely regarded as an important concept 37 

for understanding and tackling food insecurity (Rabbitt et al. 2023). 38 

Much of existing food access research focuses on the supply side, where 39 

measuring food accessibility is a critical topic. Researchers have used various datasets, 40 

such as point-of-interest data and satellite imagery, and developed both spatial and 41 

aspatial measurements (Larsen and Gilliland 2008, Nguyen, Hoang, et al. 2020). Recent 42 

years have witnessed an emerging number of studies on the demand side, shedding light 43 

into the household food acquisition behavior as well as the financial, mobility, and dietary 44 

considerations underlying the observed behavior (Simelane and Worth 2020). Commonly 45 

used approaches include gathering store data (e.g. transaction data or loyalty card 46 

information) or engaging individuals through surveys  (Todd and Scharadin 2016) and 47 

recoding their activity-travel diaries (Wray et al. 2023). The studies offer detailed insights 48 

into household food access patterns as well as collecting rich purchase and attitudinal 49 

information. However, typically relying on primary data collection (Rabianski 2003), 50 

these studies tend to have small sample sizes, contain sampling bias, and face challenges 51 

with tracking behavioral differences across large areas and over time.  52 

The recent availability of large-scale mobile device location GPS data offers a 53 

new approach to study human mobility (Kwan 2016). These passively collected 54 

secondary data can capture the movements of thousands of individuals over extended 55 

periods of weeks or months, with spatial and temporal resolutions of meters and seconds. 56 

Researchers have applied these data to study a variety of human mobility topics such as 57 

commuting patterns and evacuation behaviors (Kalter et al. 2021, Zhao et al. 2022, Horn 58 

et al. 2023). Large-scale GPS data holds promises for advancing our understanding on 59 

food access (Cetateanu and Jones 2016). However, the potentials and limitations of 60 

utilizing these data for food access analysis are not yet systematically studied (Chang et 61 

al. 2022, Horn et al. 2023, Xu et al. 2023). 62 

To address this gap, this paper explores the use of a large-scale, individual-level, 63 

longitudinal secondary GPS dataset in food access analysis. We infer food acquisition 64 

activities from the data, analyze patterns and evaluate the findings. Specifically, we aim 65 

to: 1) assess the feasibility of using passively collected GPS data to replicate traditional 66 

food acquisition analyses and obtain common metrics; 2) identify the novel insights that 67 

the dataset can provide; 3) and evaluate the robustness of the findings generated from the 68 

dataset. 69 

The paper is structured as follows. We begin with an overview of existing food 70 

access studies, examining their data sources and insights. Next, we introduce mobile 71 

location GPS data and its current applications in the food access literature. We then 72 

proceed to our case study, where we extract and analyze food-related trips from a large-73 

scale mobile location GPS dataset of 1.5 months in Jacksonville, Florida. We compare 74 

our findings with those from existing studies with the traditional approaches. 75 



 

 

Additionally, we conduct sensitivity analysis to evaluate the robustness of this mobile 76 

location GPS-based approach. Finally, we discuss the insights gained and the challenges 77 

encountered throughout this process. 78 

2. Literature Review 79 

2.1 Food Insecurity and Food Access  80 

Figure 1 below shows the four pillars of food security established in the food and nutrition 81 

security theory: availability, access, utilization and stability (Simelane and Worth 2020). 82 

First, food availability is essential; then, stable quantity, quality of food may lead to food 83 

access; ultimately, stable food access, along with utilization that meets caloric and 84 

nutritional needs, contributes to achieving food and nutrition security. The four pillars are 85 

interconnected and food access is a crucial link. 86 

 87 
Figure 1 Food access in food and nutrition security theory framework. Generated with 88 

reference to Simelane and Worth, 2020  89 

Food access research may focus on potential access (i.e. food accessibility) or realized 90 

access (i.e. food acquisition) (Khan 1992, Simelane and Worth 2020, Tadesse et al. 2020). 91 

Studies on potential food access primarily focus on the supply side. Researchers often 92 

model food outlet availability using datasets such as Point of Interest (POI) data (Larsen 93 

and Gilliland 2008) or satellite imagery (e.g., agricultural land use that informs food 94 

production and harvest patterns) (Nguyen, et al. 2020). Much work focuses on the 95 

development of accessibility measures, including measurements of “food deserts” 96 

(Berkowitz et al. 2018).  By contrast, studies on realized food access examine the demand 97 

side by analyzing food acquisition behaviors. These analyses provide insights into how 98 

individuals perceive and interact with their food environment (Dubowitz et al. 2015).  99 

Specifically, studies on food acquisition behaviors often focus on two key aspects: trip 100 

characteristics and purchase behaviors (Hillier et al. 2017). Trip characteristics include 101 

where people shop, travel distances, travel modes, and trip duration. Studies of purchase 102 

behaviors examine the types of items bought and the amounts spent.  103 

Next, we discuss how researchers study these behaviors, focusing on their data 104 

sources, research objectives, and the methodologies used or developed. We begin with 105 

reviewing traditional data sources and then the increasingly popular large-scale mobile 106 

device location data. 107 



 

 

2.2 Traditional Approaches for Food Access Analysis  108 

Traditional research methods used to understand household food access patterns include 109 

questionnaire surveys, interviews, and focus groups. Questionnaire surveys, such as the 110 

USDA National Household Food Acquisition and Purchase Survey (FoodAPS) or 111 

American Time Use Survey (ATUS), are widely used in food access studies to collect 112 

detailed data on where people shop, how much they spend, and the types of food they 113 

purchase (Coleman-Jensen et al. 2019). The structured format ensures consistent data 114 

collection, enabling comparisons across demographics and socioeconomic groups, and 115 

facilitating longitudinal studies on behavioral change (Anekwe and Zeballos 2019). 116 

Interviews and focus groups are effective for exploring participants’ nuanced behaviors 117 

and perceptions of food quality, accessibility, and affordability. Moreover, they can 118 

reveal the cultural, social, and economic contexts that shape food acquisition behaviors, 119 

uncovering motivations and barriers influencing purchasing decisions. However, studies 120 

using these approaches tend to have limited sample sizes and undersample some groups 121 

or areas (Hillier et al. 2017). Another issue with traditional approaches is that the spatial 122 

and temporal information to be collected relies on manual recall, leading to potential 123 

inaccuracies and sparse data. This limitation often confines researchers to focus on a 124 

limited set of trip origins (e.g. work or home) or destinations (e.g. primary stores) in their 125 

analyses (Hillier et al. 2017).  126 

2.3 Use of GPS Data for Food Access Analysis 127 

Research in human mobility analysis has demonstrated GPS data’s capability to track 128 

locations with high spatial and temporal resolution (Chen et al. 2016). Recently, food 129 

access researchers have utilized GPS data to explore food environment characteristics and 130 

their connections with space, time, and behaviors (Emish et al. 2023).  131 

2.3.1 Primary GPS data  132 

Researchers initially used GPS data to augment survey studies, where GPS tracking was 133 

integrated to gather more precise spatiotemporal movement information (Zenk et al. 134 

2011). We refer to this type of data as primary GPS data. These studies typically involve 135 

distributing GPS tracking devices to participants for the recording of geo-tagged surveys 136 

(Elliston et al. 2020), geo-fenced visits (Wray et al. 2023), or, in more frequent tracking 137 

scenarios, movement trajectories (Zenk et al. 2011).  138 

Including primary GPS data into surveys allows researchers to perform detailed 139 

spatiotemporal analyses and reconstruct individuals’ food access activities. For instance, 140 

researchers can examine food exposure based on activity spaces, rather than home or 141 

workplace (Elliston et al. 2020); they can also calculate time-weighted exposure (Liu et 142 

al. 2020). More importantly, by using these new data, researchers can compare between 143 

supply, potential access, and realized access (see definitions in Section 2.1), leading to 144 

new behavioral insights. For example, Sadler and Gilliland (2015) found that proxy 145 

measurements consistently underestimate exposure to junk foods compared to 146 

objectively-derived GPS tracks (Sadler and Gilliland 2015). Elliston et al. (2020) noted a 147 

weak correlation between objective calculated and subjectively perceived outlet counts 148 

(Elliston et al. 2020). In addition, Liu et al. (2020) observed significant positive 149 

association between fast food meals consumed and time-weighted number of fast food 150 

outlets exposed but not with ratio exposed (Liu et al. 2020). 151 

However, collecting primary GPS data is resource-intensive and so only small 152 

sample sizes are achieved, preventing these studies from engaging representative 153 

participant groups. Cetateanu and Jones (2016) and Siddiqui et al. (2024) reviewed the 154 



 

 

papers on GPS and food environment exposure and reported sample sizes ranging from 155 

12 to 654 individuals. Moreover, the collected GPS data may suffer from Selective Daily 156 

Mobility Bias (SDMB). SDMB is a common issue in behavior research that relies on 157 

tracking movement, as individuals’ mobility patterns are not random but shaped by their 158 

routines, preferences, and behaviors (Li et al. 2023). The awareness of carrying 159 

monitoring devices can also lead to increased consciousness of actions and potential 160 

behavioral changes over the study period (Zhang et al. 2021). 161 

2.3.2 Secondary GPS Data  162 

With the widespread use of location-enabled mobile devices, large-scale high-resolution 163 

individual-level GPS data are increasingly common (Chen et al., 2016). We refer to them 164 

as secondary GPS data since they are often collected by data vendors and social 165 

networking service platforms passively and not for specific purposes (Zhao et al. 2016). 166 

Secondary GPS data have become increasingly important in food access analysis, 167 

providing valuable behavioral insights. 168 

Secondary GPS data are available to researchers in aggregated and disaggregated 169 

forms. Aggregated data are pre-processed datasets that capture human activities across  170 

geographic units such as census tracts and block groups. Compared to survey data, they 171 

offer much higher spatial resolution, larger sample sizes, and support more flexible 172 

spatiotemporal analyses. For instance, studies have observed links between visits to food 173 

retailers with diet-related diseases (Xie et al. 2023), grocery visits and regional socio-174 

demographics (Smith et al. 2023), and alcohol outlet visits and domestic violence (Hu et 175 

al. 2021, Chang et al. 2022). Disaggregated data, consisting of raw GPS points at the 176 

individual level, offer detailed movement information (Zenk et al. 2018). Like primary 177 

GPS data, they facilitate detailed activity analyses, allowing for the comparison between 178 

supply, potential access, and realized access discussed earlier. However, they benefit 179 

from significantly larger population sizes and longer coverage periods. For example, 180 

Horn et al. (2023) analyzed data from over 240,000 smartphone users to correlate fast 181 

food outlet visits with diet-related diseases in Los Angeles County; García Bulle Bueno 182 

et al. continues Horn et al.’s study but focused on food visits and their influence on dietary 183 

choices; Xu et al. studied grocery shopping patterns over 50 weeks, highlighting spatial 184 

disparities in access among minority communities. 185 

While secondary GPS data offer considerable potential, they also have drawbacks. 186 

Unlike primary GPS data, the data quality (accuracy, spatiotemporal coverage) may differ 187 

across individuals (Li et al. 2023). Also, algorithm design and parameter choices in the 188 

analysis of secondary GPS data can significantly impact the study results (Kwan 2016). 189 

The uncertainties in algorithm design is further exacerbated by the absence of contextual 190 

information about movement activities from the GPS data (Zhao et al. 2022). Moreover, 191 

despite larger sample sizes, studies have shown that secondary GPS data tended to under 192 

sample disadvantaged groups, which can bias study findings (Li et al. 2023).  193 

 2.4 Summary of Literature 194 

Based on the literature review, we can identify several research opportunities. Firstly, 195 

there is a limited application of disaggregated secondary GPS data in food access studies 196 

compared to traditional methods, especially in the US South with high obesity rate and 197 

significant food access problem (Bodor et al. 2010). Second, existing applications of the 198 

new data primarily focus on specific type of food outlets, while regional food 199 

environments encompass a wide array of food outlets and can have different impact on 200 

community health and people’s visiting patterns are different (Todd and Scharadin 2016, 201 



 

 

Balagtas et al. 2023). For instance, visits to fast food places tend to occur more frequently 202 

on weekdays, whereas supermarket more on weekends (East et al. 1994, García Bulle 203 

Bueno et al. 2024). While these distinctions have been explored using traditional 204 

approaches, they remain relatively underexplored with the new datasets (Todd and 205 

Scharadin 2016, Smith et al. 2023, Xu et al. 2023). Third, there is limited discussion in 206 

the literature regarding the sensitivity of the inferential processes in using secondary GPS 207 

data. It is crucial to address this sensitivity to ensure the reliability and accuracy of the 208 

findings from the data. 209 

To address these gaps, we conduct a detailed case study in Jacksonville, Florida. 210 

We first apply a large-scale, individual-level, secondary GPS dataset to explore its 211 

potential in understanding the food access patterns within the study area. This 212 

investigation provides insights into the temporal and spatial patterns of food acquisition 213 

behavior across different types of food outlets in the study region. We have further 214 

conducted sensitivity analyses to test the robustness of study results in regards to 215 

algorithm design and parameter choices. 216 

3. Case Study 217 

3.1 Study Area 218 

Our case study area is the City of Jacksonville, Florida, the largest municipality in the 219 

state. The city’s demographics reveal a complex socioeconomic landscape. According to 220 

the American Community Survey (ACS) 2018-2022 five-year estimates  (U.S. Census 221 

Bureau 2022), the population of 950,203 includes 53.1% White, 30.4% Black, and 11.3% 222 

Hispanic or Latino, and with a median age of 36.3 years, a median household income of 223 

$64,138, and 14.8% living in poverty. Figure 2 illustrates the spatial distribution of the 224 

sociodemographic characteristics by tracts. As shown in the figure, urban tracts generally 225 

exhibit higher population density, greater percentage of individuals aged 18-39, lower 226 

household vehicle ownership, and higher poverty rates. The northwest part of the study 227 

area demonstrates a lower percentage of White population.  228 

 229 
Figure 2 Socio-demographic characteristics of tracts in Jacksonville, Florida 230 



 

 

3.2 Data 231 

3.2.1 Mobile Device GPS data 232 

This study uses a large-scale mobile device location dataset from Gravy Analytics, which 233 

aggregates data from over 150 million U.S. mobile devices through various apps (Gravy 234 

Analytics 2023a). According to the company, it complies with privacy laws, sourcing 235 

data only from users who opt in for device identifier and geolocation signal collection, 236 

with a 48- to 72-hour processing delay, where no location data is received or processed 237 

in real-time (Gravy Analytics 2023b).  238 

The dataset is pre-processed for quality control, with accuracy indicated by a 239 

forensic identifier field, which measures GPS positioning errors caused by factors like 240 

spoofed locations, IP address-derived signals, and abnormal signal density (Xu et al. 241 

2022, Gravy Analytics 2023c). For this study, we included only records classified as High 242 

Accuracy by Gravy Analytics, where GPS positioning errors do not exceed 35 meters. 243 

While lower accuracy data may be useful for broader neighborhood analyses or overall 244 

trend identification, it is not suitable for pinpointing specific customer visits to particular 245 

locations (Gravy Analytics 2023c). This pre-analysis filtering minimizes positioning 246 

errors, ensuring more reliable results. (However, inherent limitations in this GPS-based 247 

approach still affect accuracy and generalizability, as discussed later.) 248 

The GPS dataset used in this study covers the area of Jacksonville, Florida, and it 249 

spans from September 1st, 2022, to October 15th, 2022, with a duration of 45 days.  After 250 

pre-processing, we retained a total of 286.4 million disaggregated GPS records. The data 251 

fields used include device identifiers, latitude, longitude, geohash, and timestamp.  252 

3.2.2 Food Outlets 253 

We obtained a comprehensive database of food outlets in North Florida from the 254 

University of Florida GeoPlan Center (Alachua County 2022). This database covers 255 

various components of the local food system, including food production sites, retailers, 256 

and distribution sites. Our study focuses on the food retail category, which includes 257 

grocery stores, supermarkets, drug stores, corner stores, gas station stores1 and restaurants. 258 

This study focuses solely on food-at-home (FAH) access, excluding restaurants and dine-259 

out locations.  260 

Trip purpose or purchasing information are usually absent from secondary GPS 261 

data. However, from a supply-side perspective, different food outlets offer varying types, 262 

prices, quantities, and varieties, which can significantly impact the health outcomes of 263 

individuals and communities (Ma et al. 2017). Also, from a demand-side perspective, 264 

individuals visit different food retailers for various purposes, not limited to food access. 265 

For instance, some may frequent big box stores for non-food items while visiting gas 266 

station stores for food. The USDA’s FoodAPS indicates that SNAP households allocate 267 

13% of their food spending to convenience stores, dollar stores, and pharmacies (Todd 268 

and Scharadin 2016).  269 

To address these complexities, we build upon existing survey practices and 270 

literature (Todd and Scharadin 2016, Xu et al. 2023) to develop a two-step classification 271 

approach: 272 

(1) Food quality and physical size, four types: 273 

 

1 The drug stores, corner stores, and gas station stores in the dataset have been verified to sell food. See 

additional details here: https://www.geoplan.ufl.edu/portfolio/foodshed/ 



 

 

• Large Groceries or Supermarkets that mainly sell food (e.g. Publix, Winn-Dixie) 274 

• Big Box Stores that carry a full range of food products in addition to other products 275 

(e.g. Walmart Supercenter, Target)  276 

• Small Retailers that sell healthy grocery items like milk, eggs (e.g. CVS, Dollar 277 

General) 278 

• Stores Selling Only Processed or Low-Quality Food (e.g. Circle K, 7-Eleven) 279 

(2) Purpose of visitation: We distinguish between 280 

• Stores Primarily Selling Food, where individuals predominantly visit for food-281 

related purposes (e.g., groceries, food marts). 282 

• Locations Visited for Various Purposes, such as big box stores, gas stations, and 283 

pharmacies. 284 

We will first consider all POIs and categorized them into these four types, then narrow 285 

our analysis to those that primarily sell food. Figure 3 shows the distribution of the stores 286 

under the two classifications and Table 1 summarizes the numbers. 287 

 288 
Figure 3 Distribution of different retailers in the study area 289 

Table 1 Number of stores under different classifications 290 
 

Large 

Groceries 

Big Box 

Stores 

Small Healthy 

Outlets 

Processed Food 

Outlets 

Total 

Primarily food-

selling location 

110 0 123 176 409 

Other 6 31 153 323 513 

Total 116 31 276 499 922 

3.3 Method 291 

Figure 4 shows the analytical framework of the case study. We begin by processing and 292 

merging the GPS, food outlets, and sociodemographic data. With the integrated data, we 293 

infer individual food access trips. From these activities, we then calculate food access 294 

metrics and analyze their patterns.  295 

 296 



 

 

 297 
Figure 4 Analytical framework of the case study 298 

3.3.1 Food Access Trip Inference 299 

With the secondary GPS dataset, we first infer the home locations of the users and filter 300 

out the users without an inferred home. Then, we infer the stay points and trips of each 301 

user. With this information, we then merge the food store location data and the socio-302 

demographic data, extract food-related visits and conduct further analysis. 303 

(1) Data preparation. We first build a geopandas POINT object from the longitude, 304 

latitude, and timestamp of the pre-processed GPS data, along with the user 305 

identifiers. 306 

(2) Home inference. Home is a crucial element in individuals' daily activity (Zenk et 307 

al. 2018) as well as food acquisition activity (Coleman-Jensen et al. 2019). It is 308 

also fundamental in aggregating the individuals and conducting tract-level 309 

analysis. Based on the pre-processed GPS data, we infer a home location for each 310 

user in the dataset. To do this, we adopted the proxy-home-location inference 311 

algorithm developed by Zhao et al. (Zhao et al. 2022). We first mesh the study 312 

area into 20-meter square grids and then count the number of GPS positions of 313 

each user during the period of 10:00 PM to 6:00 AM the next day. We assign the 314 

users' homes as the grids with the most data points. For the users whose home 315 

locations cannot be found through this, we then extract their weekend GPS data 316 

and consider the users' homes located in the grid where they spend the most 317 

amount of time during weekends. 318 

(3) Stop inference. We conduct stop inference to extract activity stays from the GPS 319 

data. In this case study, we use the Python package Trackintel (Martin et al. 2023), 320 

a package for movement data processing. In Trackintel package and this study, an 321 

activity stay or stop is where the user made no large movement in a period. The 322 

package adopts a sliding window detection algorithm to detect point clusters and 323 

generate stops (the geometric center of the clusters). In this study, we set the 324 

staying thresholds to a space of 100-meter radius, and a duration of at least 5 325 

minutes and at most 720 minutes.  326 

(4) Trip inference. Apart from stop inference, we also conduct trip inference to extract 327 

the origins of the activities. In Trackintel package and this study, a trip is the 328 

chaining of the trip-legs that connect pairwise stops. The package adopts a 329 



 

 

backward searching method to identify the temporally connected movements. It 330 

then groups them into one trip and extracts the trip starting point. In this study, we 331 

set the threshold for connecting point pairs to 60 minutes.  332 

(5) Identify food-related activities. Among all the extracted stops, we then identified 333 

the ones within certain radii of the food outlets and considered those as food-334 

related stops and their trips as food-related trips. We first pre-determine a set of 335 

radii and then discuss the implication of selecting those values (see Sensitivity 336 

Analysis section below). During this process, we exclude the stays points whose 337 

duration are longer than 2 hours. We adopted this threshold based on the American 338 

Time Use Survey (ATUS) result where the median grocery shopping activity 339 

duration is 30 minutes with a standard deviation of 30.6 minutes (Brown and 340 

Borisova 2007). 341 

3.3.2 Descriptive and Spatiotemporal Analysis 342 

Based on the inferred food-related stops and trips, we compute various metrics to analyze 343 

individuals' and populations' food acquisition patterns. Guided by literature, we calculate 344 

the following four metrics that have been widely adopted in survey studies (Leroy et al. 345 

2015, Todd and Scharadin 2016):  346 

(1) Number of food retailer visits. To describe the food acquisition frequency, we 347 

calculate the number of food retailer visits made by each individual during the 348 

study period.  349 

(2) Number of unique stores visited. To capture the diversity and variability in food 350 

retailer visitation, we calculate the number of unique stores visited. 351 

(3) Home-to-store distance. To analyze spatial characteristics, we calculate the 352 

distance between the user’s inferred home location and the visited retailer store, 353 

as well as the distance to the nearest store. We discuss the differences between 354 

these values. Recognizing that network distance better reflects the accessibility 355 

and travel patterns in high-density urban areas, we used OpenStreetMap road 356 

network to calculate network distances. 357 

(4) Proportion of home-based visits. To analyze the origins of the food acquisition 358 

activities, we calculate the proportion of home-based visits. We consider the trips 359 

with origins within 200 meters (circular buffer) of the user’s home as home-based 360 

visits and divide the number of home-based trips by the total number of trips. 361 

With the calculated metrics, we conduct spatial and temporal analysis and 362 

generate visualizations. In the temporal perspective, we select the number of visits as the 363 

metric for the visualization. We illustrate its time-of-day and the day-of-week pattern. For 364 

the time-of-day pattern, we plot the distribution of number of visits by hours. For the day-365 

of-week pattern, we first compare the time-of-day pattern of weekdays and weekends and 366 

then plot the distribution of visits by day of the week. We also analyze the longitudinal 367 

pattern of the 1.5-month period. We calculate the total number of visits each day, plot the 368 

curves, and discuss the patterns with the major events in the calendar. In the spatial 369 

perspective, we select the home-to-store distance as the metric for the visualization. We 370 

aggregate the individual metrics by calculating the tract-level average and visualize them 371 

in maps. We also explore the differences in visit patterns across store types and their 372 

correlations with the sociodemographic characteristics. 373 



 

 

3.4 Results 374 

We present the empirical findings, and then discuss the potential of the dataset and the 375 

implications of its limitations. 376 

3.4.1 Sampling Rate 377 

Figure 5 shows the spatial distribution of the individual devices and the histogram of the 378 

tract-level sampling rate. We extracted 852,224 food-related stops generated by 93,854 379 

individual devices. The average tract-level sampling rate is 10.4%. The map suggests a 380 

reasonable approximation of the population spatially, and the histogram shows a normal-381 

like distribution centered around 8%. This indicates that despite some spatial variations, 382 

mobile device location data can significantly increase the sample size and spatial 383 

coverage of study populations. 384 

  385 
Figure 5 Spatial distribution and histogram of tract-level sampling rate 386 

We notice significant variations in sampling rate from the histogram and the map. 387 

This aligns with findings from prior studies, suggesting the existence of geographic bias 388 

in GPS data (Li et al. 2023). In general, we observe lower sampling rates in the suburban 389 

and rural parts of the study area, which is not surprising as digital infrastructure (e.g., 390 

wireless network) tends to concentrate in urban areas. Interestingly, we also notice 391 

significant variability in sampling rates across tracts with lower socioeconomic status 392 

(i.e., areas with lower vehicle ownership and lower income levels). Unraveling the 393 

mechanisms behind this variability requires an in-depth investigation, which is beyond 394 

the scope of this study. Moreover, a further analysis that compares the demographics and 395 

socioeconomic characteristics of GPS device users to the general population in the study 396 

area would enhance our understanding of data representativeness and result 397 

generalizability; however, the absence of sociodemographic information from the GPS 398 

data prevents us from conducting such comparisons. 399 

3.4.2 Extracted Food-related Stops and Trips 400 

Table 2 shows the number of food-related stops and trips extracted. As discussed in 401 

Section 3.3.1, we infer food-related stops to identify food acquisition visits, and trips to 402 

identify the origins of those visits. We pre-determined a set of searching radii for 403 

identifying food-related stops: 150m for Large Groceries, 200m for Big Box Stores, and 404 

50m for Small Healthy Outlets and Processed Food Outlets, which are selected based on 405 

results from the sensitivity analysis (see the Sensitivity Analysis section). As shown in the 406 

table, the size of sample extracted from the GPS data is significantly larger than those of 407 

traditional surveys.  408 

 409 



 

 

Table 2 Food-related stops and trips extracted 410 
 

Large 

Groceries 

Big Box 

Stores 

Small 

Healthy 

Outlets 

Processed 

Food 

Outlets 

Total 

Stops 250,916 76,979 191,796 332,533 852,224 

Trips 1,336 646 801 1,808 4,591 

 411 

These results suggest that secondary GPS data can capture larger sample sizes, 412 

which allows us to calculate individual and sample average food access metrics (Section 413 

3.4.3) and obtain more detailed spatiotemporal pattern (Section 3.4.4). As shown in Table 414 

2, we were able to extract from the GPS data not only Jacksonville residents’ visits at 415 

various types (i.e., stops) of food stores but also from where they traveled there (i.e., 416 

trips). Also, the timestamp in the extracted visits allows us to analyze the temporal 417 

patterns. Although, Table 2 also shows that inferred trips are significantly fewer than the 418 

inferred stops. As discussed in the Data and Method section, the drop is due to the reliance 419 

on continuous tracking points for inferring food acquisition trips. This condition can be 420 

very strict: it requires the devices to be on, tracking service to be activated, and coverage 421 

to be reliable. This is a challenge often encountered in secondary GPS data. In contrast, 422 

survey-based methods capture trip information in a single survey, but they can be 423 

susceptible to recall inaccuracies and low spatiotemporal resolution (Ver Ploeg et al. 424 

2015). Primary GPS data, while offering high resolution, tends to have smaller samples 425 

due to cost constraints (Zenk et al. 2011). Therefore, it will be a difficult yet crucial task 426 

for future research to improve secondary GPS data quality and granularity and 427 

contextualize the dataset with trip purposes and demographic information, which will 428 

significantly enhance the dataset's power in studying food access patterns (Nguyen, 429 

Armoogum, et al. 2020). In the following subsections, we further explore the inferred 430 

stop and visit by calculating food access metrics from them. 431 

3.4.3 Food Access Metrics 432 

Here we present the area-wide metrics calculated from the extracted food acquisition 433 

activity and compare those in survey-based studies from prior literature. Table 3 shows 434 

the four metrics for each type of store.  435 

 436 

Table 3 Food acquisition metrics for each type of store 437 

Metrics 

Large 

Groc

eries 

Big 

Box 

Store

s 

Small 

Healthy 

Outlets 

Process

ed Food 

Outlets 

All 

Food 

Locati

ons 

Nation-wide 

Survey Findings 

Number of visits per 

individual (visits) 
4.74 3.12 4.1 5.02 9.08 

17.2  

(Todd and 

Scharadin 2016) 

Number of unique 

stores visited per 

individual (stores) 

1.86 1.31 1.93 2.38 3.85 

4.4 (retail banners, 

for grocery 

purpose, each 

month)  

(The Food 

Industry 

Association 2019) 



 

 

Distance of 

visited 

store to 

home (km) 

Euclidean 5.29 6.54 5.63 5.8 5.62 
6.1 (Euclidean 

distance, to 

primary store)  

(Todd and 

Scharadin 2016) 
Network 7.43 8.69 7.21 7.47 7.61 

Proportion of home-

based visits (%) 
18.65 

14.4

4 
18.33 16.02 17.84 

64 (grocery trips) 

(Ver Ploeg et al. 

2015)  

 438 

The descriptive analyses reveal the effectiveness of GPS data to estimate the same 439 

metrics that were traditionally extracted from surveys, such as visitation frequency, stores 440 

visited, and trip origin. However, we observe inconsistencies compared with prior studies. 441 

The GPS-based metrics exhibit significantly lower levels compared with their 442 

counterparts from survey-based studies, suggesting that the data may underestimate users' 443 

food access patterns. For instance, the results indicate an average of 9 visits over 1.5 444 

months, translating to an average of 1.4 visits per week. In contrast, the nationwide USDA 445 

FoodAPS survey reports an average of 6.47 food acquisition events per week for its 446 

respondents (households, average size 2.42) (Todd and Scharadin 2016). A statewide 447 

study in Florida demonstrates a lower frequency, with 5.0% of respondents visiting 448 

grocery stores or other retail markets daily, 29.6% twice weekly, and 39.4% weekly 449 

(Hodges and Stevens 2013). The results from the statewide survey study, although lower, 450 

still exceeds the visitation frequency observed in our case study. In contrast to the 451 

American Time Use Survey, which indicates that around 64 percent of grocery shopping 452 

trips involve a direct journey from home to the store (Ver Ploeg et al. 2009), the GPS data 453 

results underestimate this proportion. Regarding the metric of home-to-store distance, the 454 

extracted values are more consistent with literature (3-4 miles, Euclidean distance) (Ver 455 

Ploeg et al. 2015). 456 

The observed disparities in the secondary GPS dataset can be attributed to two 457 

factors. First, despite higher coverage at the population level, the temporal coverage of 458 

each individual's activities can still be low. Intermittent tracking, present in both primary 459 

and secondary GPS data, results in low temporal coverage and a decrease in the recorded 460 

number of visits. Secondary GPS data, in particular, encounters an additional challenge 461 

known as behavior bias (Li et al. 2023). This bias occurs when individuals activate 462 

location services selectively, typically during specific app usage, leading to 463 

inconsistencies in tracking. In the context of food access, this bias may arise when device 464 

users, who may be already familiar with nearby food retailers, refrain from activating 465 

location applications. This may contribute to the lower frequency and home-based visit 466 

percentage. Second, the inference procedure may also introduce errors, which is 467 

extensively discussed in the sensitivity analysis section later.  468 

3.4.4 Spatiotemporal Patterns of Food Access 469 

A major advantage of GPS data is its high resolution and ability to capture detailed and 470 

precise patterns in both spatial and temporal dimensions. For spatial analysis, we focus 471 

on the home-to-store distance metric, examining both the distance to the stores visited 472 

and the distance to the stores nearest to the individuals’ homes. We first focus on each 473 

sample individual, plotting the distribution curves and the scatter density plots of the two 474 

distances in Figure 6 and Figure 7. Figure 7 is the iso-density graph of the visited v.s. 475 

nearest store distance points of each individual. Darker colors indicate higher density 476 

levels, meaning more individuals. We then aggregate the individual measurements to 477 

tract-level and visualize them in maps in Figure 8.  Figure 8 presents the tract-level 478 



 

 

average home-store distance values, where darker colors indicate larger distances. 479 

 480 
Figure 6 Density plots of home-to-store distances  481 

 482 
Figure 7 Density contours of home-to-store distances  483 



 

 

 484 
Figure 8 Spatial distribution of home-to-store distances  485 

Firstly, the three figures illustrate notable trends that align with prior survey-based 486 

studies. For example, food-related visits in urban areas tend to cover shorter distances. 487 

The distances to the visited stores are generally larger than the distances to the nearest 488 

stores, suggesting that individuals may bypass the stores closest to their homes. These 489 

findings are also commonly observed in literature (Ver Ploeg et al. 2015). Moreover, we 490 

can observe detailed patterns that are often overlooked in survey-based studies due to 491 

limited sample sizes. The distribution curves and scatter density plots allow us to examine 492 

individual-level differences. As depicted in Figure 6, distances to the nearest big box 493 

stores surpass those to other store types, displaying not only greater magnitudes but also 494 

increased variability (in descending order: Big Box Stores, Large Groceries, Small 495 

Healthy Outlets, and Processed Food Outlets). On home-to-visited-store distances, both 496 

two individual-level figures (Figure 8) show that the four store types have similar 497 

patterns. This implies that a group of individuals may share similar patterns in visitation 498 

to various food retailers. This aligns with previous findings in travel behavior and food 499 

access that, while small samples may reveal distinct patterns for various stores based on 500 

individual characteristics (Liu et al. 2015), the results are usually similar when using 501 

aggregated data (Supernak 1967).  502 

Our results also reveal the spatial heterogeneity in the visitation patterns, which 503 

are a major advantage of GPS data. Figure 8 displays tract-level aggregated distances. 504 

Generally, the distances increase as one moves further away from the urban areas, but 505 

there are exceptions. Particularly, for big box stores, the urban core areas exhibit 506 

noticeably large distances. If we overlay these maps with socio-demographic 507 

characteristics (Figure 2), we can identify that these areas are marked by lower income, 508 

higher population density, and a higher percentage of non-white populations.  Previous 509 

studies in Jacksonville also observed this urban food desert phenomenon (Lewis et al. 510 

2018).  511 



 

 

Another interesting phenomenon captured by Figure 7 is the difference in slope 512 

between the four categories of food stores. The value of slope represents the people’s 513 

preference to a closer store, with a slope of 1 meaning people will exclusively visit the 514 

closest store and a slope of 0 meaning people will not view distance as a factor when 515 

choosing stores to visit. Among the four types, the Big Box Stores have the steepest curve, 516 

followed by Large Groceries, while Small Healthy and Processed Food outlets have 517 

almost a flat curve. This also means that people tend to visit the closest big box stores and 518 

large groceries, while they do not view distance as a factor when choosing small healthy 519 

and processed food outlets. This can be primarily because the difference between stores 520 

at different locations can be less significant due to standardization guided by business 521 

strategies. Meanwhile, small healthy and processed food outlets are more heterogeneous 522 

and diverse in both quality and price, which drives people to visit specific locations. 523 

Figure 9 illustrates the daily and weekly food outlets visitation patterns extracted 524 

from the dataset. We normalized the data with the total number of visits of the day/week 525 

periods to produce percentages. The time-of-day curves depicted in the top two figures 526 

show similar patterns between weekdays and weekends. However, the visits are more 527 

concentrated during the daytime on weekends and the evening peak is less pronounced 528 

on weekends and shifts towards noon. This is consistent with the literature, as people's 529 

primary locations and activities often differ on weekends (Zhao et al. 2022). This 530 

variation is more pronounced for big box stores compared to other types of stores, which 531 

is logical given the nature of weekend shopping activities (East et al. 1994).  532 

From the day-of-week curves in the bottom figure, we can observe a peak on 533 

Friday. Other researchers have also observed a similar phenomenon (Cai 2006). 534 

Furthermore, we conducted longitudinal analyses. Figure 10 shows the number of trips 535 

extracted each day during the study period. Note the significant drop around Labor Day 536 

(Sep 5, 2022). 537 

 538 
Figure 9 Temporal distribution of food trips for each type of food stores 539 

The results of temporal analysis and longitudinal analysis are very coherent. 540 

Previous survey-based studies struggled to divide the reported trips into different periods 541 



 

 

on weekdays due to lower sample size. Longitudinal analysis requires continuous 542 

surveying over an extended period, which can be expensive and time-consuming. 543 

Moreover, the passive collection nature makes secondary GPS data an excellent source 544 

for these analyses. Theoretically, the data are generated continuously, providing 24/7 545 

observations, and they offer more accurate timestamps compared to recall-based 546 

shopping logs. Therefore, we can conclude that secondary GPS have great potential as a 547 

complement to traditional methods, and they can offer more nuanced insights into the 548 

intricacies of the food access behavior. 549 

 550 
Figure 10 The change of the number of trips during the study period 551 

4 Sensitivity Analysis 552 

GPS data, especially secondary GPS data, lacks direct information about the activities 553 

performed, requiring inference procedure, which introduces uncertainty. Two possible 554 

sources of uncertainty are (1) the variability in activity purposes at the same location and 555 

(2) the parameters used in extracting the activities (Kwan 2016). It is important to evaluate 556 

how different design choices interact with each other and with the GPS data and produce 557 

varying results. In this study, we explore the first uncertainty by applying a new store 558 

classification that limits stores to primary food-selling locations (Section 4.1), and the 559 

second, by testing the radii for identifying food acquisition activity (Section 4.2).  560 

4.1 Food Store Classification 561 

The first aspect to be evaluated is regarding the store inclusion criteria, i.e., visit to which 562 

stores can be classified as food acquisition. In previous analysis, we considered all the 563 

possible food stores listed in the dataset, even the ones that also carry non-food items 564 

(such as big box retail stores). We now focus only on the primarily food-selling locations 565 

and recalculate the metrics in Table 3. Table 4 and Figure 11 show the results and 566 

comparison for both analyses. It is noteworthy that the type Big Box Stores are not 567 

included here because they all are not primarily food-selling locations.  568 

 569 

Table 4  Food access metrics for each type, primary food-selling locations only 570 

Metrics 
Large 

Groceries 

Small Healthy 

Outlets 

Processed 

Food Outlets 

All Food 

Locations 

Number of visits per individual 

(visits) 

5.13 3.47 6.04 5.13 



 

 

Number of unique stores visited per 

individual (stores) 

1.87 1.46 2.41 1.87 

Distance of visited store to home, 

network distance (km) 

8.15 7.82 7.03  7.52 

Proportion of home-based visits 

(%) 

17.95 21.62 18.9 17.95 

 571 

  572 
Figure 11 The extracted home-to-store distance, for primary food-selling locations only 573 

We first examine all food retailers without classification. Comparing the last column 574 

(considering all store types) of Table 4 to Table 3, we witness a decrease in both the total 575 

number of visits and unique stores visited. This is intuitive as we limited the stores 576 

considered. However, we also witness a decrease in home-to-store distance and an 577 

increase in the proportion of home-based visits. This can be explained by the activity 578 

space theory. According to prior literature (Gong et al. 2020), people exhibit different 579 

radii (home as the center) for different activities, with maintenance activity radius smaller 580 

and recreational activity space larger. By limiting the stores to primary food-selling 581 

locations, we could have reduced non-food-access-related visits. 582 

We then distinguished different types of stores, and observed distinct patterns:  583 

• The trips to Processed Food Outlets behave similarly to the pre-classification 584 

trend: fewer visits, fewer unique stores visited, smaller home-to-store distances, 585 

and a higher proportion of home-based visits. 586 

• The trips to Healthy Outlets also behave similarly, except that the home-to-store 587 

distances increased instead of decreased. 588 

• The trips to Large Groceries, however, behave differently. The home-to-store 589 

distances increased, similar to that of Small Healthy Outlets, but the proportion of 590 

home-based visits decreased. Also, the number of visits and the number of unique 591 

stores visited increased instead. 592 

In our analysis, we calculated the metrics among the individuals who performed 593 

the activity (i.e. the population who visited the stores in the shorter list are different from 594 

those who visited the stores in the original list). So, these findings suggest that behavioral 595 

differences exist among individuals visiting primarily food-selling locations and those 596 

visiting complex food locations.  597 

The increase in grocery visits per individual is worth noting. Visitors to grocery 598 

stores that primarily sell food items (e.g. Whole Foods) may visit more frequently and 599 

travel further compared to those to grocery stores that also carry non-food items (e.g. 600 

Winn-Dixie); visitors to gas station stores (a sub-type of Processed Food Outlets) may go 601 

more frequently than those visiting fast food and processed food stores (another sub-type 602 



 

 

of Processed Food Outlets). The individuals who tend to visit grocery stores that only sell 603 

food items may be the ones who already have relatively better access to those stores. They 604 

are able to travel longer distances, visit more frequently, and be more flexible regards the 605 

origins of the visits. On the other hand, there are individuals who frequently visit gas 606 

stations and dollar stores. They may have fewer options other than the unhealthy or 607 

innutritious food outlets. 608 

These behavioral differences can inform designing food security or nutrition 609 

security interventions. There are multiple existing studies that support incorporating 610 

healthy food items into non-traditional outlets as an effective intervention approach from 611 

the supply-side perspective (Lucan et al. 2018, Chenarides et al. 2021). Researchers have 612 

argued that in areas with easier access to fast food restaurants and convenience stores but 613 

limited access to supermarkets, enhancing the variety of foods in existing stores may be 614 

more effective than opening new stores (Ver Ploeg et al. 2009). The strategy can also 615 

promote demand for healthy food and a healthy lifestyle. A national dollar store 616 

perception and utilization survey by the Center for Science in the Public Interest (CSPI) 617 

showed that dollar stores are important in food access in communities with limited 618 

resources and the residents strongly support offering healthy options at those locations 619 

(John et al. 2023), which is consistent with our findings from the case study section.  620 

We also find that the high-quality grocery visitors in the study area tend to be 621 

more advantaged in terms of food access; however, there is a noticeable trend of reliance 622 

on gas station stores in terms of food access. Table 1 shows that 65% of the processed 623 

food outlets in the study area are gas station stores and dollar stores that do not primarily 624 

sell food. After adding those less likely food locations, the number of visits per individual 625 

increased from 3.47 to 5.02. This can serve as a scenario simulation of adding healthy 626 

food options to those stores:  both the physical accessibility and actual exposure to healthy 627 

food would increase after the intervention.  This further highlights the strategy's potential 628 

as a successful approach to tackling food deserts moving forward.  629 

4.2 Food-access Trips Identification 630 

The second parameter to be assessed is regarding the radius of food store when identifying 631 

food access trips. Figure 12 shows the satellite images of two food locations in Google 632 

Map. In the case of the supermarket on the left, a search radius too small may result in 633 

false-negative identifications, i.e., food access trips are misidentified as non-food access 634 

trips. Meanwhile, in the case of the small grocery store on the right, a radius too large 635 

might result in false-positive identifications, i.e., non-food access trips are misidentified 636 

as food access trips. Therefore, we test the radii of 50m, 100m, 150m, and 200m, and 637 

examine whether they would yield significantly different results. 638 

 639 



 

 

Figure 12  Identification radii in food-related trip extraction 640 

 641 

In the previous analyses to extract food-related trips, we selected a food-related 642 

visit identification threshold of 150 meters for Large Groceries, 200 meters for Big Box 643 

Stores, and 50 meters for Small Healthy Outlets and Processed Food Outlets.  However, 644 

this parameter can significantly influence the analysis. In light of this, our case study 645 

explores different values and examines the robustness of the results. Figure 13 shows the 646 

food access metrics for different store types calculated with different thresholds.  647 

 648 

 649 
Figure 13 The food access metrics calculated under different radii 650 

The Number of Visits per Individual (the first figure) is the most fundamental 651 

metric among the four. We can observe steep increases for Small Healthy Outlets and 652 

Processed Food Outlets with larger radii, while the rise for Big Box Stores is relatively 653 

steady. These patterns align with expectations. Given the abundance of Processed Food 654 

Outlets and their concentration in densely populated urban areas (Figure 3 and Table 1), 655 

they may be more sensitive to radii too large than big box stores in suburban or rural 656 

areas. However, as shown in the rest three figures, the other three metrics also change as 657 

the radius increases, and their changes are less intuitive.  658 

This highlights the sensitivity of the GPS-based approach to trip identification 659 

parameters. We recommend different values for different types of stores instead of setting 660 

one value. For our case study area, Jacksonville, we suggest adopting 50m for Small 661 

Healthy Outlets and Processed Food Outlets, 200m for Big Box Stores, and 150m for 662 

Large Groceries. The values are based on Figure 13. Setting 50m for the two types of 663 

small food retailers is because their Number of Visits per Individual metrics increase 664 

significantly after that; the metric of big box stores remains steady increase. Setting 150m 665 

for groceries is because they are larger than small retailers but smaller than big box stores, 666 



 

 

and their home-to-store distance metric (third figure) switched to increase when set to 667 

200m.  668 

5 Discussion 669 

This study systematically examines the potential and limitations of employing large-scale 670 

human mobility GPS data in the context of food access research. Using a Terabyte-level 671 

disaggregated GPS database with over 286.4 million GPS signal records, we have inferred 672 

food-related trips and stops and analyzed the food access patterns across different store 673 

types in Jacksonville, Florida. We offer several high-level discussions on this topic below. 674 

5.1 Using Secondary GPS Data for Food Access Analysis 675 

Overall, we find that the GPS data are promising for advancing food access research and 676 

can be used to inform policymaking. Compared to traditional approaches such as surveys, 677 

GPS data can lead to significantly higher sampling rate and broader spatial coverage of 678 

the study population. Moreover, our investigation reveals that secondary GPS data can 679 

generate the widely adopted metrics and replicate the analyses commonly done in 680 

traditional food-access studies. Notably, GPS data can facilitate a more nuanced 681 

understanding of the spatiotemporal patterns of food accessibility patterns than traditional 682 

approaches. A prime example is temporal analyses, which can be rather expensive for 683 

traditional approaches but are straightforward and cost-effective with GPS data. 684 

However, our analysis also reveals several significant limitations of secondary 685 

GPS data in food access research, which affect the accuracy and representativeness of 686 

study findings. First, we noticed GPS data significantly undercount food-related activities 687 

in our case study. This could be due to Selective Daily Mobility Bias (SDMB), introduced 688 

by people’s inconsistent activation of location-tracking services over time or their choice 689 

of not using navigation apps for grocery trips to stores they frequently visit. Moreover, 690 

we notice that different assumptions and parameter settings in the inference process can 691 

have major implications on the research results. The sensitivity analysis shows that the 692 

classification of food stores and the selection of identification radii have major 693 

implications on the four food-access metrics, which means that the robustness of study 694 

findings is subjective to algorithmic design and parameter choices (Kwan 2016). 695 

Furthermore, despite capturing larger sample sizes, the GPS data contain spatial biases. 696 

As shown in Section 3.4.1, the sampling rate significantly varies across the area.  697 

Finally, the absence of individual-level sociodemographic information from the 698 

GPS data limits its applicability to shed light on food access patterns across population 699 

groups. Existing studies have shown that while the GPS data are well-sampled across 700 

demographic categories (Squire 2019), some population groups are underrepresented in 701 

the data. For example, by using mobile device location data collected by SafeGraph 702 

Coston et al. (2021) showed that older and non-white individuals are under-sampled.  Li 703 

et al. (2023) found that the Hispanic and low-income populations were underrepresented 704 

across the states in the U.S., while the advantaged groups, e.g., the high-income and 705 

highly educated people were overrepresented.  706 

 707 

5.2 Policy Implications 708 

First, our case study not only reaffirms some findings in the literature but also generates 709 

new insights that can inform future planning strategies to improve food access. For 710 

instance, in Section 4.1, when focusing on primary food-selling locations, we observed 711 



 

 

fewer visits to large grocery stores and more visits to smaller outlets (e.g., gas stations) 712 

that primarily sell processed food. This implies that adding healthy food options to 713 

processed food outlets could be a more effective strategy for increasing food access and 714 

exposure to healthy foods than building larger stores that sell healthy food. 715 

Second, the limitations of GPS data discussed above suggest the need for caution 716 

when using such data to inform policy. The potential for over- or under-estimation of 717 

food-related visits could lead to biased results that mislead policy and planning efforts. 718 

For example, overestimating visits may create an inflated sense of accessibility, 719 

potentially diverting attention from necessary improvements in food access. The settings 720 

of the inference algorithm are the most crucial factors due to its rule-based nature. In this 721 

paper, we provide the recommended parameter values and settings for the future studies. 722 

It is also important to note that GPS data only captures food acquisition behavior, 723 

reflecting just one aspect of the larger issue of food security. It is essential to recognize 724 

that food purchasing, food consumption, or dietary outcomes are distinct and require 725 

separate considerations (Simelane and Worth 2020). The central problem and the pressing 726 

concerns of food insecurity/access is its association with negative nutrition- and diet-727 

related health outcomes and its relationship with health disparities (Singleton et al. 2023).  728 

Third, the continuous and passive nature of GPS data collection presents a unique 729 

opportunity for policymakers to monitor the long-term impacts of food security programs. 730 

For instance, by tracking changes in visitation patterns to grocery stores and other food 731 

outlets before and after the implementation of food assistance programs, policymakers 732 

could assess the effectiveness of these interventions. This would provide real-time 733 

feedback on the success of initiatives and allow for more agile adjustments to policy 734 

measures. This longitudinal approach would also remedy the drawbacks of the GPS data 735 

discussed above if pre- and post-program analysis follows the same inference rules.   736 

Finally, our study underscores the importance of mixed-method research. While 737 

both big and small data—and the methods used to analyze them—have limitations, they 738 

can complement and enhance each other (Kwan 2016). As noted in the literature review, 739 

studies that integrate primary GPS data collection with surveys have uncovered novel 740 

insights that challenged previously held behavioral assumptions. We believe that 741 

applying a mixed-method approach to complement secondary GPS data with other data 742 

sources can provide a more holistic understanding of food access behaviors and improve 743 

the interpretation of key metrics, which is beneficial for future planning and policy 744 

making. For instance, conducting surveys on the same population from which the GPS 745 

data are collected would allow for the triangulation of results. Such data integration would 746 

facilitate statistical validation of the metrics extracted from both sources, addressing 747 

potential intrinsic or inference-induced inaccuracies in secondary GPS data and 748 

enhancing the generalizability of study findings.  749 

 750 

5.3 Limitations and Future Research 751 

This section notes several study limitations and offers several potential future research 752 

directions. First, the anonymity of secondary GPS data used here prevents us from 753 

distinguishing whether the observed differences in food access patterns across individuals 754 

are mainly shaped by their exposure to food environments or by their personal tastes (Jin 755 

et al. 2023). Populations groups tend to exhibit distinct perceptions and preferences 756 

towards various types of food outlets, but their behavior is also influenced by the food 757 

environment. Future research that isolates the independent effects of the two factors can 758 

lead to more targeted intervention strategies. 759 



 

 

Another limitation is the temporal and spatial generalizability of the findings. 760 

Temporally, research on food sales has shown seasonality in food demand (Hu et al. 2021, 761 

Balagtas et al. 2023), which may influence mobility patterns. Therefore, generalizing our 762 

findings from the 45-day study period could introduce bias and limit the 763 

representativeness of the results. Spatially, study findings from Jacksonville may not be 764 

transferable to other contexts. A 2012 study noted disparities in food access among Health 765 

Zones within the city, with Urban Core residents facing a greater health burden (Healthy 766 

Jacksonville Children Obesity Prevention Coalition 2012). Additionally, Jacksonville’s 767 

poverty rate (14.8%) exceeds both the national (12.5%) and state averages (12.9%)  (U.S. 768 

Census Bureau 2022). These socio-economic factors should be considered when 769 

generalizing the results to other contexts. 770 

Finally, this study focused solely on home locations, distinguishing between 771 

home-based and non-home-based activities. Expanding the analysis to include work and 772 

recreation locations could yield valuable insights (Ver Ploeg et al. 2015). In addition, 773 

improving food access has broader implications beyond food security. It addresses social 774 

equity, as marginalized communities face disproportionate barriers to accessing healthy 775 

food (Jin et al. 2023). It can also strengthen local economies by supporting community-776 

based food businesses, promoting local sourcing, and reducing food transport—777 

ultimately enhancing environmental sustainability (Lucan et al. 2018). Future research 778 

could explore sociodemographic factors like income, race, and age to better understand 779 

the spatial and temporal dynamics of food access and contribute to more comprehensive 780 

interventions (Li and Kim 2020, Zhao et al. 2022).  781 

 782 

6 Conclusion 783 

Mobile device location data presents a novel approach to studying food access. In this 784 

study, we systematically assess the potentials and limitations of human mobility GPS data 785 

compared with traditional approaches. We conducted a case study in Jacksonville, 786 

Florida, with a large-scale human mobility GPS dataset of 13 billion GPS records in the 787 

whole state and 286 million records in Jacksonville.  788 

With the GPS dataset, we analyzed the distribution of four major metrics 789 

commonly employed in traditional food access studies and explored their spatial and 790 

temporal patterns. The results demonstrate the capability of GPS data to extract key 791 

insights regarding food access patterns that confirm findings from prior studies. On the 792 

other hand, our analysis also demonstrates that relying on GPS data would significantly 793 

underestimate the food-related activities and frequency. Our sensitivity analyses, 794 

focusing on the classifications of food-selling stores and identification radii of food-795 

access trips, reveal some inherent challenges of extracting food-related trips from human 796 

mobility GPS data and algorithmic uncertainty in this process.  797 

While affirming the potential of GPS data for food access analysis, the study also 798 

emphasizes the need for cautious use of such data. Future research should focus on 799 

improving data quality, refining activity inference algorithms, and incorporating diverse 800 

data sources and domain knowledge to gain a deeper understanding of people’s food 801 

access patterns. Our research highlights the need for critical reflexivity, the detailed 802 

examination of the data and algorithms used, and the findings generated from them. 803 
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