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Abstract

The assessment of bus stop amenities is important for providing funda-
mental data for public transit research, planning, and infrastructure enhance-
ments. So far, public data on the amenities at bus stops have largely been
unavailable. This study develops an automated, low-cost, and generalizable
approach using Google Street View images and deep learning techniques to
evaluate bus stop amenities. Leveraging the latest YOLOv8 model, transfer
learning, and a dynamic prediction algorithm, our approach achieves efficient
detection of shelters and benches with high accuracy and precision in major
Florida cities. Results reveal highly heterogeneous spatial patterns for both
shelters and benches within and across cities. Additionally, we conducted sev-
eral tests to evaluate the transferability of the system to other urban contexts,
which shows that highly accurate feature detection results can be achieved
through model fine-tuning on a small sample of local data. In summary,
the proposed system offers a scalable and efficient solution for large-scale
real-time assessment of bus stop amenities, which can inform public trans-
portation research and planning, especially for future transit infrastructure
improvements.
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1. Introduction

Bus stops are the initial points of interaction between the public and
a transit system. For many, bus stops serve as gateways to opportunities,
connecting them to jobs, healthcare, groceries, recreation, and more. The
amenities provided at bus stops significantly influence riders’ experience and
the public’s perception of public transportation. Proper bus stop ameni-
ties, such as shelters, seating, signage, lighting, and accessibility features,
can enhance riders’ experience and safety [1]. Studies have shown that the
availability of bus stop amenities can promote bus ridership [2]. Also, bus
stop amenities can increase the attractiveness of fixed-route services to pas-
sengers with disabilities [3, 4], thereby potentially reducing reliance on more
expensive paratransit options.

Nevertheless, public data on the amenities available at a given bus stop
are largely unavailable. Most U.S. transit agencies do not maintain or release
information of bus stop amenities [5, 6], mainly due to the lack of manpower
and funds to conduct manual inspection for a large number of bus stops.
For some transit agencies that have developed such a dataset, their lists
generally cover a very limited set of amenity types (e.g., shelter and seat-
ing) and in some cases, and often include a significant amount of inaccurate
or missing data due to infrequent updates. Although the General Transit
Feed Specification (GTFS) data are gaining more popularity with detailed
and comprehensive bus stop information, bus stop level amenities are rarely
covered. This presents a missed opportunity for research projects in which
obtaining objective measures of riders’ experiences is important. Moreover,
the lack of bus stop level amenity conditions along transit networks prevents
transit agencies and local jurisdictions from making informed decisions on
prioritizing and implementing enhancements.

The availability of Google Street View (GSV) images and recent ad-
vances in computer vision (CV) technologies (e.g., objective detection) offer a
promising approach for developing a comprehensive and up-to-date database
of bus stop amenities. GSV is a widely available and frequently updated data
source, and if coupled with computer vision algorithms it can achieve accu-
rate detection of bus stop amenity features. It can facilitate large-scale bus
stop assessment without the need for labor-intensive manual inspections. To
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realize this potential requires one to tackle two key technical challenges: one
is to efficiently extract the amenities present at each stop from GSV images,
and the other is to train a computer vision model that can detect various
bus stop amenities with high accuracy and precision.

To address these challenges, we develop the Transit Amenities Assessment
System (TAAS), which offers an automated, low-cost, and generalizable ap-
proach that uses GSV and computer vision for bus stop assessment. Transit
agencies with GSV image coverage can apply TAAS to efficiently create de-
tailed bus stop amenity datasets for their service areas. Considering the
potential GTFS data quality issues (e.g., the bus stop coordinates are not
precise) and the high cost for automatic extraction of GSV images through
Google API, we have introduced a dynamic prediction process in TAAS. As
we will discuss in detail below, the dynamic parameter adjustment mecha-
nism incorporated in the system not only enhances feature detection accuracy
but also ensures efficient use of computational resources.

This paper is organized as follows: we first describe the research back-
ground and review relevant literature on bus stop amenities assessment.
Then, we introduce TAAS, describing the system framework, data needs,
as well as its workflow that includes a transfer learning process, a dynamic
prediction mechanism, and model evaluation and testing. To demonstrate
the practical deployment of TAAS, we apply it to assess transit stop amenities
(focusing on shelters and benches) in five major Florida cities. In addition,
we have conducted a series of scalability and transferability tests to evaluate
the applicability of our proposed approach across various deployment con-
texts and study areas.. We conclude the paper by discussing the results and
present potential implications for future research and practice.

2. Research Background

2.1. Assessment of Bus Stop Amenities

Two notable efforts have been conducted in recent years to develop inven-
tories of bus stop amenities. One is the Operation Bus Stop Census initiative
led by MARTA Army (a citizen-led advocacy organization in Atlanta) that
accomplished the collection of data on available amenities at over 3,200 bus
stops (approximately one-third of all MARTA bus stops) with the help of
over 300 volunteer surveyors [7]. The data collection phase lasted almost one
year and was conducted both in-person and remotely via GSV. The other
is the Bus Stop Census of San Francisco conducted by Marcel Moran, who
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inspected all 2,964 bus stops in San Francisco by bike in a three-month pe-
riod [5]. While these efforts are laudable, the data collection approaches are
too labor-intensive to be scalable to multiple cities, regions, or across the
country. Also, these approaches do not offer a convenient or efficient way to
update the bus stop census database in real time.

2.2. Application of GSV and Deep Learning to Transportation Infrastructure
Assessment

The availability of GSV images and recent advances in computer vision
technologies (e.g., objective detection) offer a promising approach to enable
the development of a national bus stop census database. Previous studies
have demonstrated the validity of using GSV images and for detecting vari-
ous transportation infrastructure elements such as traffic signs [8], signalized
intersections [9], bikeways [10], marked crosswalks [11], sidewalks [12], walk-
ability [13], and bikeability [14]. In terms of bus stop amenities, some recent
studies have applied AI methods to identify shelter, seating or signage from
street-view images [15, 6, 16].

Despite the comprehensive coverage of types of infrastructure or ameni-
ties, research gaps remain in deploying the computer vision models at scale
and then using the results to inform practice. First, the previous models rely
on a limited sample of images, often from a single region, limiting its trans-
ferabililty to other cities. Second, they rely heavily on manual annotation
to create training labels. This, combined with the cost of high-Resolution
GSV API access, has made the existing automated bus stop assessment ap-
proaches only marginally more efficient than manual audits. This study
aims to advance the automated bus stop assessment method by exploring
the potential of leveraging AI-powered image recognition for efficiently and
accurately identifying a variety of bus stop amenities, especially shelters and
benches, across different geographical contexts.

3. The Transit Amenities Assessment System

3.1. System Framework

To address the research gaps discussed above, we introduce the Transit
Amenities Assessment System (TAAS), an automated, low-cost, and gen-
eralizable system to assess various bus stop amenities. Figure 1 shows the
workflow of the framework, encapsulating the stages of data collection, model
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training, dynamic site identification, and the ensuing accuracy analysis. The
TAAS system includes three main components:

Figure 1: The Transit Amenities Assessment System pipeline.

First, using deep learning techniques, the system leverages the state-
of-the-art YOLO (You Only Look Once) model (YOLOv8) to achieve the
object detection function [17]. We implement transfer learning to enhance
detection accuracy and efficiency, allowing the model to leverage pre-trained
weights and adapt to new tasks with less data and computational cost. This
approach has been shown to improve performance in various transportation
and infrastructure applications [18, 19, 20].

Second, we introduce a dynamic prediction process to address three pre-
vailing issues that cannot be addressed by the deep learning model itself when
deploying TAAS for automated bus stop assessment. This process handles
one image and one bus stop at a time, starting with the assumption of a
perfect situation with no technical challenges encountered. Initial parame-
ters are calculated and the corresponding image is analyzed. If no target
is detected, the process adjusts parameters to account for another specific
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challenge of the current bus stop until all challenges have been addressed or
the target is detected.

Finally, users of TAAS can validate the results inferred by the dynamic
prediction process with the ground truth data and use different performance
metrics to quantitatively assess the model performance. Meanwhile, dur-
ing the dynamic identification process, we have introduced a mechanism to
measure the API parameters for each step (e.g., Zoom and Divide, Rotate,
Change View) to improve the results of feature detection at each bus stop.
Google charges a fee for each API call, which constitutes the primary ex-
pense of using TAAS. The system can provide a high-fidelity break-down of
the API usage and the cost-efficiency in each step. Based on the API usage
measurement, one can determine how to balance object detection accuracy
and project costs when using the TAAS. We have also designed a series of
transferability test that can be used for assessing the system’s ability to apply
to other contexts.

3.2. Data

Our proposed approach primarily use two publicly available datasets:
GTFS and GSV data. The GTFS data is the de facto standard format
to transmit and broadcast transit service supply and schedule data, which
consists of several relational database tables that detail the transit system’s
stops, trips, routes, arrival and departure times, and other schedule-related
information. Here we primarily extract from the GTFS data information
regarding bus stops, which includes the bus stop coordinates and stop ID.
For the GSV data, we use the official GSV application programming inter-
face (API) to fetch static street view images as our primary dataset. This
low-cost, high-capacity API allows researchers to capture non-interactive,
medium-resolution images from the panorama database. It is noteworthy
that the GSV API returns static images, not the interactive images within a
web-based interface. Each street view image is returned via an HTTP request
specified by various parameters, including the coordinates of the panorama,
field of view (FoV, the zoom level of the image), pitch (up or down angle of
the camera), and heading (left and right angle of the camera).

3.3. Detailed Workflow of the Transit Amenities Assessment System

As shown in Figure 1, the TAAS includes three key steps: deep learning
model training, dynamic prediction, and model evaluation and testing. To
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illustrate the workflow in the following subsections, we will focus on describ-
ing the detection of bus shelters and benches to exemplify the effectiveness
of the system for detecting bus stop amenities. The system can be used to
detect other features (e.g., signage, boarding pads, accessibility features) as
needed.

3.3.1. Deep Learning Model Training and Validation

This step starts with retrieving corresponding street view images from
Google Maps according to the coordinates of transit stops. For stops with
clear, complete images, we directly downloaded images using the GSV API
and included them in the dataset. For images that bus stops that were not
captured via the API or the automatic requested image not fully covering
the amenities, we manually adjusted and captured the images on the Google
Street Map website before adding them to the dataset. As we obtain these
images from different sources, the collection of original images can have dif-
ferent resolutions and potential dataset pollution. To address this issue, we
standardize all training images by resizing the images manually captured
from Google Street View. We then enhance the resolution of all images by
using OpenCV’s super-resolution model to ensure similar adjacent pixel pat-
terns across all images, optimizing the training effect of the model. This
same enhancement technique will also be applied during prediction, ensuring
matched adjacent pixel distribution patterns between the training set and
the prediction set.

To prepare the training set, we choose Roboflow, a tool known for its fast
annotation and efficient preprocessing [21, 22], and its compatibility with
YOLOv8, for manual labeling training, validation, and testing samples. We
save the annotations in YOLO format including the class and bounding box
coordinates. Then we download the pre-trained YOLOv8 weights for object
detection (yolov8l.pt) trained on the Common Objects in Context (COCO)
dataset as the initial weight for transfer learning [23]. These pre-trained
weights are good at handling complex environments and detecting multiple
classes of objects, and they require moderate computing and storing ability.
We use 100 epochs for training, which is an empirically chosen value, to
ensure the model learns the data features adequately without over-fitting,
providing a balance between sufficient training and practical training time.
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3.3.2. Dynamic Prediction and Parameter Adjustment

While it is intuitive to apply deep learning model to the GSV images
collected from Google API, there are multiple drawbacks of the model and the
API, which limit our ability to automate the collection of street view images
and generate high-fidelity predictions. Specifically, the technical challenges
are as follows:

Challenge 1: Low Image Resolution. Despite GSV static API’s low
costs and high capacity, it has a maximum image size of 640x640 pixels, which
poses a significant constraint for acquiring high-resolution panoramic views.
On one hand, the returned images can be too blurry when the observation
point is far from the bus stop and a large FoV is used, as shown in figure 2
A. On the other hand, a too close-up photo may not capture the whole
picture of the bus stops and miss some amenities. To address this issue, we
need to optimize the parameter settings to find a best position to capture
the complete view of bus stops and amenities without compromising the
resolution.

Challenge 2: Coordinate Discrepancy. The reported bus stop lo-
cation in the GTFS data may be inaccurate due to GPS errors or data
misalignment. Therefore, calculating heading and FoV with simple triangle
math leads to potential discrepancies in results. These errors include wrong
camera heading angles (Figure 2 B) and too far-away or close-up view; in
some extreme cases, the returned images may be from the interior of a build-
ing or a totally different street across the intersection corner. Meanwhile, in
the GTFS data, a single pair of latitude and longitude coordinates is used
to denote the location of a bus stop. But different amenities, especially for
bus stop sign, shelter and bench, can naturally have different position. This
physical separation means that using one single coordinate point to represent
all elements is fundamentally flawed. Hence, attempting to detect all these
elements with the GTFS data may results in missing one or more targeted
facilities in the retrieved images.

Challenge 3: Object Obstructions. Given that GSV primarily uses
cars (i.e., specialized panoramic vehicles) for image capture, it is inevitable
to encounter obstructions between the view point and the targeted bus stop
as illustrated in Figure 2 C and D. These obstructions may include vehicles,
trees, other structures and glare when facing the sun. Notably, vehicles are
the frequent type of obstructions, and they may become more challenging to
avoid when GSV Car and the obstruction vehicles move in the same direction
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and continuously obstruct the bus stop in multiple panoramic images along
the road.

Figure 2: Illustrations of technical challenges.

To fully automate the inference process, we develop a pipeline to dy-
namicly adjust the camera parameters and engage in real-time prediction.
This approach aims to emulate and automate the manual adjustment pro-
cess used to rectify ground truth errors, thereby extending its applicability
to subsequent research endeavors.

Step 1: Naive Prediction. In Step 1, we assume that the stop has
not encountered any technical challenges and directly predict based on the
original image. We use the GSV API to obtain the panoramic ID (panoID)
for observing the city bus stop from the specified location. We adjust FoV
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based on the distance from the panoID location to the target location and
download the street view image. Next, we enhance the image resolution by a
factor of 2 using OpenCV’s super-resolution model to achieve better details
of the feature. We then predict the features using the trained YOLOv8
model. If a feature is detected, we save the prediction result and proceed to
the next bus stop. This step requires that the feature is completely captured
in the image and is close enough to the observation position to have a good
resolution. If no feature is detected, we assume it is either because the shelter
truly does not exist, or it was not detected due to other technical challenges,
and move on to step 2. This rule requires very low false-positive rate of
the YOLO model. We later empirically calculate the false-positive rate and
overall accuracy of our trained deep learning model to confirm it satisfies this
assumption in the analysis section.

Step 2: Divide and Zoom In. In Step 2, we assume that the stop’s
location is nearly or completely accurate, with potential false-negative re-
sults caused by the issue of low image resolution (Challenge 1). Under this
assumption, we split the image into left and right sections and zoom in by
adjusting the orientation and FoV without losing any angles. For the left sec-
tion, the heading is adjusted by subtracting a quarter of the FoV and then
taking the result modulo 360 degrees. For the right section, the heading is
adjusted by adding a quarter of the FoV and then taking the result modulo
360 degrees. The new FoV for both sections is set to half of the original
FoV. We then download the zoomed-in images and identify them separately.
Figures 3 A and B demonstrate the process of this step. If the target is not
detected in Step 2, we continue to address other challenges and move on to
Step 3.

Step 3: Rotate. In Step 3, we assume a significant deviation between
the target and actual locations, with potential false-negative results caused
by the issue of coordinate discrepancy (Challenge 2). Therefore, this makes
the distance and FoV adjustment in Step 2 moot. To address this, we keep
the original observation point and adjust the viewing angle. We repeat the
operations from Step 1 and Step 2 until a shelter is detected or all reasonable
observation points are covered. Notice that we also execute the divide and
zoom-in operation after rotating since the new images would still have the
low-resolution issue. Figure 3 C shows an original view of a stop with a
slight deviation from the actual facilities. Figure 3 D exemplifies a solution
by adjusting the viewing angle.

Step 4: Change Viewpoints. If no target is found in Step 3, we assume
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Figure 3: Illustration of technical approaches

the target coordinates are nearly correct but obstructed, with false-negative
result caused by objective obstructions (Challenge 3). To tackle this issue,
we move the observation point to four adjacent locations in the north, south,
east, and west directions. We select locations ten meters away from panoID
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location, an empirical value that allows us to obtain a new panorama from
GSV without moving too far in the cardinal directions of the target. This
provides different observation points from GSV cars’ panoramic shots. After
changing the observation point, we calculate the new angle and distance to
the target, download the image, and repeat the operations from Step 1 to Step
2. Notice that we also execute divide and zoom-in operation after rotating
since the new images would still have the low-resolution issue. Additionally,
this step serves an implicit purpose. While the previous operations focused
on changing the observer’s perspective to locate the shelter, this step gathers
multiple angles of observation for the shelter. This approach compensates
for the image recognition model’s potential deficiencies in identifying shel-
ters from certain angles, thereby further enhancing the model’s recognition
capability. If a shelter is still not identified after executing Step 4, we finally
conclude that the target bus stop lacks a shelter and continue to the next
bus stop in the loop.

3.3.3. Evaluation and Testing

Before applying the models developed from the previous two steps to
detect features at all transit stops and construct a comprehensive bus stop
amenities database, one should evaluate the model performances with mea-
sures such as prediction accuracy, precision, and mAP50 (mean average preci-
sion calculated at an intersection over union threshold of 0.50). If the project
has budget constraints, the analyst is advised to also perform a scalability
test as the TAAS deployment process involves the use of GoogleMaps API,
which can occur some costs depending on the usage amount. Finally, if mod-
els trained from a TAAS deployment are intended for use in new study areas
not included in the training set, we recommend conducting transferability
tests before such use.

4. Application of the Transit Amenities Assessment System in Florida

To illustrate how TAAS can be deployed in practice, we apply it to assess
transit stop amenities (focusing on shelter and bench) in five Floridian cities
and their transit systems: Miami (Miami-Dade Transit), Orlando (LYNX),
Tampa (Hillsborough Area Regional Transit Authority), Jacksonville (Jack-
sonville Transportation Authority), and Gainesville (Regional Transit Au-
thority).
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4.1. Model Development

Specifically, we collect the most recent version of GTFS data from these
cities and train a deep learning model for detecting amenities at each bus
stop. We employ the YOLOv8 model for transfer learning on bus stop sam-
ple images that we manually picked and labeled from the five Florida cities.
Our training set has 1,140 bus stops in total, including 380 bus stops in
Gainesville and 190 bus stops in the other four Floridian cities, respectively.
Our validation and test sets have 125 and 510 bus stops, respectively. In ad-
dition, we diversify the samples based on different surrounding environment
and land use types. These measures can strategically prevent the inflation
of test results due to excessive similarity between the training and testing
samples in terms of traffic and urban infrastructure.

We have also obtained a dataset from the City of Gainesville that contains
a comprehensive list of the bus stop amenities, which can serve as the ground-
truth data for model validation. In addition, to test the transferability of
the system, we used the transit amenities inventory database developed by
Marcel Moran for the city of San Francisco from to test the performance of
the trained YOLO model when applied to a different study area [5]. The
results will be discussed in a separate section below.

4.2. Evaluation of Model Performance

We validate the YOLO model with a validation set of 125 bus stops and
452 images. For bus shelters, the precision, recall, and mAP50 of the trained
YOLO transfer learning is 0.965, 0.878, and 0.918, respectively; for benches,
the three measures are 0.945, 0.862, and 0.905 for bench, respectively. This
shows our deep learning is well trained for the purpose of detecting shelters
and benches. However, it is noteworthy that the performance of the YOLO
model is different from the performance of the system due to the technical
challenges discussed above.

To test the inference outcomes of the whole system, we calculate the
accuracy and precision of the system on the test set as well as the false-
positive rate and API usage. We create the ground-truth data from the
official amenities inventory and our manually annotated stop statistics. To
test the generazability of our system to diverse environments with differ-
ent urban forms and distinctive architectural styles of bus stop facilities, we
undertook detailed validations for the five Florida cities, i.e., Miami, Jack-
sonville, Orlando, Gainesville and Tampa, as shown in Table 1.
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Table 1: Result Evaluation

City Samples
Shelter Bench

API Usage
Accuracy Precision Accuracy Precision

Total 650 0.963 0.941 0.845 0.901 10243
Orlando 140 1.000 1.000 0.836 0.906 2278
Gainesville 140 0.950 1.000 0.814 0.941 2263
Jacksonville 140 0.979 0.923 0.85 0.885 2246
Miami 140 0.921 0.885 0.886 0.867 1991
Tampa 90 0.967 0.869 0.834 0.912 1465

The system achieves state-of-the-art predictive performance compared
with prior study [6, 15] on a large testing sample. Our model exhibits ro-
bust performance in shelter predictions across all the four listed cities with
consistently high accuracy (0.963) and precision (0.941) as well as a low
False Positive Rate (FPR, 1.73%). Among the five cities, Orlando shows the
best results and Miami has the worst performance. The differences in model
performance can be partially attributable to their built environment charac-
teristics, with Miami having a lower performance for having diverse land use
patterns, sophisticated infrastructure systems, and rich environmental fac-
tors.Bench detection achieved satisfactory results with an overall accuracy of
0.845 and an overall precision of 0.901, although its performance was slightly
lower than that of the shelter. This exhibits that the system can achieve
high reliability and fidelity for multiple types of bus amenities.

Through Naive Prediction (Divide and Zoom in if needed), only 25 shel-
ters were detected from the 650 sampled transit stops in the five cities.
Through Rotate (Divide and Zoom in if needed), 44 cases were detected.
Through Change Viewpoints (Divide and Zoom in if needed), 113 cases were
detected. There were 468 cases where shelters were concluded to be absent.
This result directly justifies the necessity of our system. Only 13.73% of
shelters could be identified using naive detection and zooming in. The re-
maining 86.27% required other methods provided by the system, indicating
that the majority of the bus stop location data contains inaccuracies or faces
the challenges we mentioned earlier.
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Figure 4: Spatial Patterns of Bus Shelters with and without Shelters

4.3. Deploying the Trained Model to Assess All Bus Stops in Florida Cities

We further run our system to perform an assessment of all bus stops in
Miami, Orlando, Tampa, and Jacksonville. We did not run it in Gainesville
because, as discussed above, a bus stop amenity inventory dataset already
exits in Gainesville.

Figures 4 and 6 visualize the location of bus stops with and without
shelter and bench for Miami, Orlando, Tampa, and Jacksonville. The city
centers generally witness more bus stops with shelters, which is consistent
with findings from prior studies [5, 24]. However, the spatial patterns of the
rate of bus stops with shelters is quite different from prior conclusions: Figure
5 shows that urban centers of Orlando, Tampa, and Jacksonville have lower
rate of shelters, which can be due to higher number of bus stops in those
areas. For Miami especially, some urban outskirts like Kendall and Sunset
(southwestern Miami) have much higher rate of shelters. Compared with
shelters, benches are more available in all four cities, possibly due to lower
installation cost. The spatial distribution of benches is also less clustered
than bus shelters.

Meanwhile, we witness major disparities among different cities in terms of
stop amenities availability. Table 2 shows the number and percentage of bus
stops with shelters and bench. As the city with most extensive and frequent
transit service, Miami have the most shelters, followed by Tampa. On the
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Figure 5: Spatial Patterns of Rate of Bus Stops with Shelters in Census Block Groups for
Four Cities

Figure 6: Spatial Patterns of Bus Shelters with and without Bench
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Figure 7: Spatial Patterns of Rate of Bus Stops with Shelters in Census Block Groups for
Four Cities

other hand, Orlando and Jacksonville, two highly car-dependent cities, only
have 14.86% and 9.10% of bus stops with shelters, respectively. Meanwhile,
the city with highest benches is Tampa with almost half of the bus stops with
benches. However, highly car-dependent cities like Orlando and Jacksonville
still have lower percentage of bus stops with benches.

Table 2: Number and Percentage of Stops with Shelters and Bench in Four Floridian Cities

City
Stops Count

Shelter Rate Bench Rate
Total with Shelter with Bench

Miami 8097 1797 3303 22.19% 40.79%
Tampa 2327 492 1118 21.14% 48.04%
Orlando 1460 217 422 14.86% 28.90%

Jacksonville 1033 94 234 9.10% 22.65%

In conclusion, the majority of bus stops in all four cities lack infrastruc-
ture to shield public transit users from extreme heat and provide places to
rest when waiting, which could incur major negative implications on users’
experience and health [25, 24]. This effect may be even more significant con-
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sidering the cities with less bus shelters also have lower service frequency and
longer waiting time [26].

5. Scalability and Transferability of the Transit Amenities Assess-
ment System

The analyses above exemplify the effectiveness of our methods to assess
the bus stop amenities with high fidelity and precision across four Florida
cities. As the system is intended to be applicable to a wide spectrum of
scenarios and urban contexts, we further conduct a series of scalability and
transferability tests to evaluate the applicability of the our proposed methods
in various deployment contexts and study areas.

5.1. Balancing Prediction Accuracy and API Usage for Improved Scalability

Unlike many prior studies that relied on existing training images captured
by humans [6, 9], our system uses a real-time API to dynamically capture the
location and details of the features. As of July 2024, the cost of requesting
one static GSV image is $0.007 per image. An extensive bus system can have
several thousands of bus stops, and the inference of one bus stop can incur
multiple API requests since the system would depend on iteration of inference
process. Therefore, API usage becomes a major factor as it determines the
monetary cost of the system deployment, which can have critical implications
for the implementation of the framework.

Therefore, we first conduct a detailed API usage analysis of the system
presented above. Considering all five cities, Step 1 and Step 2 cost up to 3
API usages, Step 3 costs up to 6 API usages, and Step 4 costs up to 12 API
usages. This shows that the high performance of the system comes at the
expense of increased API usage. On average, one bus stop requires about
15.8 static images to achieve the best performance, which is equivalent to
$0.11.

To reduce API expenses, we present a cost-lite version of TAAS designed
to balance prediction accuracy and API usage, thereby enhancing the sys-
tem’s scalability. As noted in the model performance section, Step 4 identi-
fied shelters in 113 cases, while no shelter was detected in 468 cases. This
indicates that 89.3% of the shelter detection results are produced from Step
4, with 80.5% of these results concluding that the bus stop is not equipped
with shelters. Since most results conclude that there is no shelter, reducing
the precision of Step 4 would not significantly impact the overall accuracy of
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the system. Given that reaching a ”no shelter detected” conclusion requires
executing all proposed solutions and completing all steps, Step 4 accounts
for the highest API usage and is therefore the most expensive phase of the
process. Consequently, we aim to reduce costs specifically in Step 4, where
we performed zoom operations from four observation angles to mitigate the
impact of our assumptions on system performance. In the cost-lite version
of TAAS deployment, we adopt a more aggressive strategy regarding the ac-
curacy of the coordinates, allowing us to reduce the cost during the divide
and zoom-in operations. Specifically, we assume that the target coordinates
are accurate enough to calculate the distance from the observation point to
the target and to set the GSV API parameters. While this approach re-
duces fault tolerance for limited FoV and potential coordinate deviations, it
significantly cuts API usage in Step 4 by two-thirds.

Table 3 demonstrates the potential for a widespread application of TAAS’s
cost-lite version. We find that the cost-lite version can achieve 33.2% lower
API usage with the cost of accuracy drops of 0.017 and precision drops of
0.012. One bus stop costs about 10.5 images for the cost-lite version, which
is equivalent to $0.07. This trade-off significantly improves the cost efficiency
of the system with a small price in performance as a much more practical and
economic approach to apply our assessment system to a new context. How-
ever, it is also noteworthy that despite the relatively higher cost of the full
version system, our system is still much cheaper than previous approaches
in that it saves the costs for manual annotation and high-resolution image
storage.

Table 3: Trade-off Lite Version

City Samples Accuracy (Shelter) Precision (Shelter) API Usage
Total 650 0.946 0.929 6837

Orlando 140 0.972 0.956 1530
Gainesville 140 0.936 0.960 1512
Jacksonville 140 0.971 0.957 1490

Miami 140 0.9 0.863 1345
Tampa 90 0.956 0.9 960
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5.2. Transferability Tests

While the fine-tuned system introduced above achieves both high accu-
racy and high precision in Floridian cities, another crucial question for future
deployment and application is its transferability to other cities not included
in model training. This is especially important for high-density urban areas
with very diverse and heterogeneous urban settings and facilities.

To answer this question, we choose San Francisco, one of most transit-
oriented cities in the US with intensive transit services and diverse land use
patterns, as the test site. We conduct a sensitivity analysis on the size of
the local training set, i.e., how many local street view images we add to the
training set, and calculate the accuracy and precision of each model. For
example, with 0 local images, we essentially apply the system trained with
Floridian cities to San Francisco; with 200 local images, we download 200
images of randomly selected San Francisco stops via GSV API and train
the system with 200 stops from San Francisco and 510 stops in Floridian
cities. For each test, we train the YOLO model from the default weight until
convergence. For the testing set, we randomly choose 300 bus stops from San
Francisco Bus Stop Census Open Data and collect generate ground truth and
calculate the accuracy and precision.

Figure 8 shows how accuracy and precision vary with the size of local
training set. Both accuracy and precision would peak at the training set size
of 150, while more images do not help increase the performance. This test
provides firsthand evidence for future application of the system: The above
results suggest that if analysts want to transfer TAAS to a new study area,
they can achieve satisfactory prediction outcomes by adding approximately
150 images from another city to the existing training set. Compared with the
prior model [6], which primarily focused on small- and medium-sized cities,
our approach demonstrates that we can achieve equally high object detection
capabilities in large and complex urban environments. This highlights the
robustness and transferability of our system.

6. Discussion and Conclusion

Bus stops serve as the initial gateways to transit services and opportuni-
ties [1]. However, public data on the amenities such as shelters and benches
available at a given bus stop are largely unavailable. To address this data
gap, this study presents an automated, low-cost, and generalizable system
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Figure 8: Result Evaluation

for stop amenities assessment. By leveraging the YOLO model for object de-
tection and transfer learning, our system introduce an automated, dynamic
prediction algorithm to adjust the API parameters and predict the amenities
in an adaptive, real-time manner. The system not only achieves state-of-
the-art accuracy but also reduces the difficulty and time required for model
training.

The system is highly scalable and transferable. Considering the potential
implications of cost, we present a cost-lite version of the system to minimize
the API usage without significantly compromising the performance, which
enhances the scalability of the system and its transferability to other cities.
We also present a sensitivity analysis to assess the size of local training
set needed when transferring the system to a different city. Our results
show that the system would achieve satisfactory performance at a cost of
collecting 150 local GSV images and adding them to the training set. These
analyses provide empirical evidence that supports large-scale applications of
the system in different scenarios with low manual labor and monetary costs.

The application of the system has significant practical implications for
future transit planning and administration. First, the results reveal very het-
erogeneous spatial patterns both inside each city and across different cities.
With more frequent transit services and higher demand, Miami and Tampa’s
stop amenities are significantly better than Orlando and Jacksonville, which
are highly car-dependent. Meanwhile, with lower cost of installation and
maintenance, benches are also much more available than shelters. Second,
our system can dramatically reduce the time and cost associated with man-
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ual assessments, providing reliable data to improve bus stop facilities and
enhancing the overall understanding of public transportation infrastructure.
This, in turn, enhances the quality of public transportation services and
increases user satisfaction.

In sum, the system represents a significant advancement in the field of
transportation infrastructure assessment, offering a scalable and efficient so-
lution to a traditionally labor-intensive process. With continued develop-
ment, it has the potential to become an indispensable tool for urban trans-
portation planning.

Our study has several limitations. First, the dataset, while comprehen-
sive, may not cover all possible variations of bus stop environments. In areas
with dense bus stops, the system may misidentify a different bus stop due
to close proximity. Additionally, regions like internal community roads or
school internal roads often lack street view images, making them inaccessible
for our system. The performance of the YOLO model might also degrade
in complex or cluttered scenes. Second, despite infrequent upgrading rate
of bus amenities, the construction and styles of shelters can be continuously
evolving, while our training set is based on existing data and is not fully up-
to-date. This may result in lag behind urban development and construction.

Future research can address these limitations by expanding the dataset to
include a wider range of bus stop types and conditions. Exploring other ad-
vanced object detection models could further improve accuracy. Introducing
more rigorous mathematical calculations to replace current empirical values
could enhance the precision of the system. Moreover, integrating real-time
monitoring data could enable continuous and dynamic assessment of bus stop
amenities.
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